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ABSTRACT

Data chart visualizations and text are often paired in news articles,
online blogs, and academic publications to present complex data.
While chart visualizations offer graphical summaries of the data, the
accompanying text provides essential context and explanation. Asso-
ciating information from text and charts is straightforward for sighted
users but presents significant challenges for individuals with low
vision, especially on small-screen devices such as smartphones. The
visual nature of charts coupled with the layout of the text inherently
makes it difficult for low vision users to mentally associate chart
data with text and comprehend the content due to their dependence
on screen magnifier assistive technology, which only displays a
small portion of the screen at any instant due to content enlargement.
To address this problem, in this paper, we present a smartphone-
based multimodal mixed-initiative interface that transforms static
data charts and the accompanying text into an interactive slide show
featuring frames containing “magnified views” of relevant data point
combinations. The interface also includes a narration component that
delivers tailored information for each “magnified view”. The design
of our interface was informed by a user study with 10 low-vision
participants, aimed at uncovering low vision interaction challenges
and user-interface requirements with multimodal documents that
integrate text and chart visualizations. Our interface was also evalu-
ated in a subsequent study with 12 low-vision participants, where
we observed significant improvements in chart usability compared
to both status-quo screen magnifiers and a state-of-the-art solution.
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1 INTRODUCTION

Data visualizations like bar charts, line charts, and pie charts are
commonly used to present quantitative data. These charts are in-
creasingly presented with accompanying text and are featured in
various data storytelling formats, including news magazines, slide
presentations, and videos [51] and are consumed at large, specifi-
cally on smartphones [49]. When these charts are integrated with
explanatory text, they create a ‘synergistic effect,” i.e., charts capture
the audience’s attention and provide a perceptually effective way to
represent data while accompanying text guides the viewers and adds
necessary context [32]. While sighted individuals can effortlessly
switch between text and charts quickly, low-vision users [26, 61]
face significant challenges, especially on smartphones, even if they
can technically “see” the charts and accompanying text. This is be-
cause they can only view a small portion of text or chart content
at any given time due to content magnification, given the fixed and
limited screen size of smartphones. To see the occluded parts, low-
vision users must constantly move their screen magnifier lens all
over the content, a process known as panning. Panning is well known
to cause significant cognitive overhead and other usability issues for
low vision users [34, 35, 64].

Existing solutions to improve accessibility of data charts have
primarily focused on blind screen reader users [39]. These include
providing alternative textual descriptions, natural sounds, and audio-
haptic interfaces [20, 22, 54]. While these solutions can also be
used by low vision users, they do not exploit the residual function
vision of these users, which can be a powerful input modality while
interacting with charts. Also, as these solutions do not offer direct
interaction with the data [52] and instead provide only the author’s
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interpretation of the data, they prevent users from forming their own
analyses and insights [55].

To enhance the user experience of low-vision users with charts,
specifically in multimodal documents, it is essential to first under-
stand their preferences and requirements. To this end, we conducted
a user study with 10 low-vision participants. In the study, the partici-
pants expressed a preference for viewing data points (e.g., bars in bar
charts) within the same magnifier viewport to avoid issues associated
with excessive panning and zooming. Also, the participants noted
difficulties in shifting focus between text and charts, which was ex-
acerbated by magnification-induced disorientation. They expressed
that the process of sequentially navigating through text while reposi-
tioning the magnifier lens for subsequent lines, and then transitioning
to related visual charts for a more comprehensive understanding,
was both tedious and cumbersome. Specifically, they said that the
continuous magnifier adjustment hindered their ability to integrate
information seamlessly.

Building on the identified preferences and requirements of low-
vision individuals, as well as previous research [51, 59], we devised
ChartSync to enhance the low vision usability of charts in multi-
modal documents on smartphones. ChartSync transforms tradition-
ally static charts on web pages into an interactive slide show (see
Figure 1). Specifically, ChartSync identifies important combinations
of data points in charts, selecting them based on their relevance to the
accompanying text and significant data facts present within the chart.
ChartSync then automatically generates “magnified views” of these
data point combinations, which are presented to low-vision users as
a slide show. Each slide also includes a voice-based component that
delivers customized information for each magnified view, providing
summaries of specific data points rather than traditional overall data
chart summaries [20, 28].

We evaluated ChartSync in a user study with 12 low-vision partic-
ipants. In the study, the subjective feedback for ChartSync was sig-
nificantly more positive than the baseline methods — default screen
magnifier and a state-of-the-art method [12]. All participants re-
ported that ChartSync significantly reduced their cognitive load
while interacting with data charts, allowing them to view the de-
sired content simultaneously even with magnification. In sum, our
contributions are: (i) The findings of a user study illuminating the
preferences and requirements of low-vision users when interacting
with charts on multimodal documents using screen magnifiers; and
(i1) ChartSync — an assistive technology application that provides an
alternative usable interaction mode for charts.

2 RELATED WORK
2.1 Low Vision Interaction with Smartphones

Extant research has predominantly focused on blind screen reader
users [11, 25, 27, 29]. Prior research on the needs of low vision
screen magnifier users is still in its infancy [13, 58]. Szpiro et al. [58]
conducted a study examining the interaction behaviors of low-vision
users utilizing screen magnifiers on touch devices like smartphones.
The research highlighted several accessibility and usability chal-
lenges these individuals encountered while using smartphone appli-
cations. Key findings included: (i) Difficulty in panning back and
forth following content enlargement; (ii) The need to remember
and implement various multi-finger gestures; (iii) Challenges with
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German Luxury Brands
The German luxury brands have all lost
share to Tesla over the past five years,
but new products are attracting luxury

( a) EV buyers back to traditional Bavarian
nameplates.
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Figure 1: Illustration of ChartSync. When the user selects a
chart in a document, ChartSync opens up an alternative inter-
active interface containing a slideshow of salient chart content.
The default first view shows the full chart along with an audio
summary. The user can swipe right/left to go through the re-
maining slides containing magnified views of select data points
along with the corresponding tailored audio descriptions.

content-agnostic screen enlargement that complicated navigation
and comprehension of the app content; and (iv) The time-consuming
nature of constantly changing zoom levels to properly view the
content. Although this study provides insight into the general in-
teraction challenges faced by low-vision users on smartphones, the
specific impact of these issues on their interaction with multimodal
documents, especially those with charts, is yet to be explored — a
knowledge gap that will be addressed in our work.

There also exist works that have proposed solutions to improve
usability for low-vision screen magnifier users [3, 6, 33, 35, 36,
41]. However, these solutions were primarily tailored for desktop
interaction scenarios; very few works that have concentrated on
improving smartphone interaction for low vision users [24, 41].
Moreover, these solutions have primarily focused on local context
preservation in general-purpose mobile and desktop interaction.
Therefore, they are less helpful for global contextual preservation,
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i.e., situations where content is spatially distributed as in the case of
multimodal documents with chart visualizations.

2.2 Data Charts in Multimodal Documents

Prior work has shown that users often struggle to integrate informa-
tion effectively across text and data visualizations, thereby indicating
a need for enhanced interaction support while consuming such con-
tent [42]. Therefore, many works have focused on improving the
relationship between charts and text to facilitate better information
assimilation for sighted users [31, 32, 45, 57, 70]. For instance Latif
et al. [32] developed Kori, a system that comprises three main com-
ponents: a chart gallery, an editing area, and a link setting panel. As
users type using a keyboard, Kori automatically suggests potential
links between text and charts, highlighting possible connections with
dotted gray underlines. Users can accept these automatic sugges-
tions or manually create links through simple interactions, enabling
a dynamic and interactive storytelling environment. There also ex-
ist a few other solutions exclusively designed for people who are
blind [20, 63]. For example, Greenbacker et al. [20] developed a
system for enhancing comprehension of multimodal documents
containing line graphs. Their system pinpoints the most relevant
paragraph within the article and delivers a summary of the graph at
that point, thereby improving the coherence of the presentation.

As above solutions are primarily designed for either sighted or
blind users, they lack the necessary usability features needed for
catering specifically to low-vision users. Although low-vision users
can technically use these systems with screen magnifiers, they are
likely to face significant challenges, e.g., extensive panning and pre-
cise visual/motor skills, in tasks such as identifying automatic sug-
gestions, previewing options, and interacting with visual elements.
These solutions also fail to consider the residual visual capabilities
that many low-vision users rely on when interacting with digital
devices. This paper therefore introduces a novel system, ChartSync,
specifically designed to enhance the usability of charts in multimodal
documents for low-vision users who depend on screen magnifiers.

3 UNCOVERING LOW-VISION USER NEEDS

We conducted an Institutional Review Board (IRB)-approved study
with 10 low-vision participants to identify their interaction chal-
lenges as well as explore their needs and preferences while interact-
ing with multimodal documents on smartphones. The average age
of participants was 26.1 (SD: 1.58) years and the gender represen-
tation was equal (5 male, 5 female). The participants had diverse
eye conditions including optic atrophy, glaucoma, retinitis pigmen-
tosa, LCA, nystagmus, and cataracts. All participants stated that they
browsed the web daily for at least 2 hours. The visual acuity of the
participants too varied between 20/100 and 20/500 (good eye).

In the study, participants were presented with multimodal doc-
uments and were instructed to interpret data from charts and their
corresponding textual content. After the interpretation was complete,
participants were asked a series of questions related to the chart they
had just reviewed and its associated textual content. Examples of
these questions included: What difficulties did you encounter when
interpreting data charts and accompanying text?, What strategies
did you employ to overcome these challenges?, How satisfied were
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you with the information gained from the multimodal representa-
tion?. The feedback gathered from the user study was qualitatively
analyzed using an open coding technique [50], which involved an it-
erative review and annotation of user responses to discover recurring
key insights, pain points, and themes.

Findings: Some of the notable themes from the qualitative analysis
are presented next.

Visual clarity preferred in chart interpretation. Most participants
(7) preferred simpler bar and line charts over more complex multi-
bar and multi-line charts, as they found the latter visually cluttered
and confusing. Additionally, three participants engaged in estimating
the height of bars by using an adjacent bar as a reference point. For
instance, in a multi-bar chart featuring three bars, they focused on the
tallest bar and gauged the height of the other two bars by comparing
them to the tallest one, which led to errors in estimating the height
of the bars in the bar chart.

Preference for context over clarity. Most of the participants (6)
expressed a preference for viewing bars in bar charts or trends in
line charts within the same frame or viewport of the smartphone.
Although they had the option to enhance their visual perception
by zooming into specific chart details, they preferred to trade off
magnification-induced clarity for context preservation.

Text overload reduces chart engagement. Four participants noted
an abundance of redundant text in multimodal documents. The time
required to read this textual content via screen magnification led to
cognitive overload, prompting them to entirely skip reviewing the
charts associated with the text.

Problem assimilating text and charts. All participants expressed
frustration over having to navigate through extensive text and spend
additional time examining charts using screen magnifiers, highlight-
ing the difficulty of integrating these two forms of information effec-
tively. Synthesizing information across two distinct modalities (text
and charts) presents a significant challenge when these elements
are spatially separated. This spatial separation requires readers to
continually switch their attention between the textual content and
the visual cues on the charts that encode data (such as bars, lines,
or points). This cognitive load phenomenon is known as the split-
attention effect [4] as defined in cognitive load theory [43], and
corresponds to the contiguity principle in the cognitive theory of
multimedia learning [40]. Cognitive overload due to split attention
is naturally exacerbated for individuals with low vision when using
screen magnifiers compared to sighted individuals.

The results of the preliminary user study provided the needs and
requirements of low-vision users interacting with multimodal docu-
ments and reinforced the design of ChartSync.

4 CHARTSYNC INTERFACE

Figure 2 presents the design schematic of ChartSync mobile assistive
technology. Upon loading a webpage (e.g., blog, news article) in
ChartSync — a browser-based mobile application, it leverages a
custom-trained Inception-V3 model [68] to automatically identify
and classify the types of charts (e.g., bar chart, line chart) on the
page. Following the classification of charts, ChartSync leverages
the ChartOCR model [38] to extract detailed elements like labels,
legends, and data values from the charts. Next, ChartSync extracts
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The German luxury brands have all lost share to
Tesla over the past five years, but new products
are certainly attracting luxury EV buyers back to
the traditional Bavarian nameplates. Last year,
BMW led the luxury segment with 12.5% of its
sales coming from electric vehicles (EVs),
closely followed by Mercedes and Audi, which
reported 11.5% and 11% of their total brand sales
as EVs, respectively. Notably, Volvo and
Volkswagen also demonstrated significant EV

:

{
"title": "2023 EV Share

{
"extreme_facts": {
“highest": {
"brand": "BMW",
"ev_share": 12.5
h
"lowest": {
"brand": "Toyota",
“"ev_share": 0.5

}

LLM
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{
“summary": [
{
“topic": "Extreme Shares in EV Sales",
“description”: "BMW leads the pack
with the
highest EV share,
showcasing their strong push towards
while Toyota lags

h

“ranking_fact": {

W', "ev_share": 11.5},
": "Mercedes", "ev_share": 11.4}

Data Fact JSON

of Total Brand Sales", Data fact
Chart OCR "data": [ type
{"brand
Extracts all key ev_share": 0.5}, V_a\ue facts
features of the {"brand"; "Subaru", Difference
chart, including "ev_share": 1.4} facts X
x-axis labels, Proportion
the title, and - facts [..]
other elements. Data Point JSON
Last year, BMW led the luxury
segment with 12.5% of its sales
coming from electric vehicles (EVs),
closely followed by Mercedes and
Audi, which reported 11.5% and 11%
of their total brand sales as EVs,
respectively.
LLM LLM
Notably, Volvo and Volkswagen N
dentifi also demonstrated significant EV
entifies sales, each with 11.4% and 11.5% of | Matches textual
relevant their total sales, respectively. descriptions to
information

from the text

Nearly all automakers should see

corresponding
data points.

{

"summary": [
{

"topic": "German Luxury Brands",

“description": "The German luxury brands
have all lost share to Tesla over the past
five years, but new products are attracting
luxury EV buyers back to traditional
Bavarian nameplates.”

Generates
descriptions
for the data
facts.

JSON

behind, reflecting minimal EV
integration.",
“brands”: [
{"name": "BMW", “ev_sales_share":
12.5),
{"name": "Toyota", "ev_sales_share":
0.5]

]
}

Data Fact Summary JSON

"topic": "Leading Luxury Brands in EV
Sales",

“description”: *Last year, BMW led the
luxury segment with 12.5% of its sales
coming from electric vehicles,
closely followed by Mercedes and Audi,

T
“summary": [

“topic": *Topic Name",
“description": "Brief description of thel
topic."

“description’: “Summary of the key
findings
or data facts",

“brands": [
{"name": "Brand A", "metric":

that relates
to the chart.

their share of EV sales increase in
the year ahead, with those not
currently in the game poised to
join.

sales, each with 11.4% and 11.5% of their total
sales, respectively. Nearly all automakers

should see their share of EV sales increase in

the year ahead, with those not currently in the Relevant Textual Content

game poised to join.

Multimodal Document

“Value"},
{"name": "Brand B", "metric": "Value’
]
}

which reported 11.5% and 11% of
their total brand sales as EVs,

sales_share": 12.5},
"ev_sales_share":

JSON Template

{"name": "Audi", "ev_sales_share": 11.0}

Data Summary JSON

Figure 2: ChartSync architectural workflow: This figure illustrates the backend operations of ChartSync from the moment a user
selects a chart. The data summary JSON lists relevant data points from associated text, and the data fact summary JSON details key

facts within the chart.

the text paragraphs relevant to each identified chart by measuring the
similarity between the chart’s textual components and the content
of each paragraph in the document. ChartSync then leverages a pre-
trained LLaMA Model (LLM) [60], guided through custom prompt
engineering, to accurately identify and extract key combinations of
data points from charts, linking them to their corresponding textual
content (see Section 4.2). Additionally, ChartSync identifies key
data facts within the chart, e.g., Ranking fact — ranking the top three
elements (see Section 4.3).

When a user selects a data chart on the loaded webpage using
a single tap gesture [9], ChartSync activates a multimodal mixed-
initiative interface tailored for low-vision users (see Figure 1). Uti-
lizing a swipe gesture [18], the user can then explore an interactive
slideshow showcasing tailored “magnified views” of the chart com-
prising select combinations of important data points in each slide.
Furthermore, each slide is equipped with a voice button; when acti-
vated, it provides a customized data narration that focuses on the
specific set of data points highlighted in that slide (see Figure 1).

4.1 ChartSync Interface Design

Informed by prior research [9], the user interface of ChartSync
was specifically designed for ease of navigation using simple one-
finger gestures, as opposed to the traditional two-finger slide gestures
required by standard OS accessibility services. To engage with the
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ChartSync interface, a user has to simply tap on a chart in the
current webpage. This action opens the interface where the first
“view” presented is an interactive version of the selected chart. Upon
pressing the voice button with a one-finger “Tap’ gesture, users can
listen to an audio narrative that provides an overview of the chart,
including its title, the names of the axes, and any captions associated
with the figure (see Figure 1).

When a user performs a side-ward swipe gesture, they can nav-
igate through a set of “views” as in an interactive slideshow. Each
slide showcases a magnified view of crucial data points from the
chart, organized into two sequential sets on the interface. The first
set presents combinations of data points that align with the accompa-
nying text of the chart, allowing users to listen to an audio narration
of this text while simultaneously viewing the data points. This setup
helps illustrate the author’s perspective and provides a correlation
between the visual data and textual explanation. The second set
focuses on significant data facts from the chart (see Section 4.3).
At any point during the interaction, the user can execute a upward
swipe gesture to invoke the ‘Customizer’ tool for personalizing the
appearance of the chart (e.g., color and contrast).

Design Choices. Our design choices were informed by our prelim-
inary user study and supported by existing research. Traditionally,
readers interact with news articles through a “Martini Glass” ap-
proach — initially following the narrative in text and later exploring
the visual elements that interest them [51]. This method is unimodal,
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requiring users to process text and visualizations separately. Such
unimodal navigation is not optimal for low-vision users, given their
dependence on screen magnifiers. Instead, they benefit more from
a cross-modal congruent approach [59]. Cross-modal congruence
involves delivering stimuli from different senses in a coordinated
manner, enhancing the consistency and compatibility between them.
An example of this is watching a video of a dog barking while si-
multaneously hearing the bark, which aligns the auditory and visual
senses and fosters a more integrated perception. This alignment
can significantly improve cognitive processing and reaction times.
In ChartSync, we apply this principle by simultaneously present-
ing visual content highlighting relevant data points in charts and
corresponding audio narrations.

User-Centered Design. In our work, we adopted a user-centered
design approach [10], involving 5 participants throughout the de-
velopment process. The idea behind engaging these users directly
in the development was to enhance satisfaction and acceptance of
ChartSync. We provided them with a high-fidelity prototype [62],
designed as a web app interface on a smartphone. This prototype
was developed based on insights gathered from our preliminary user
study, allowing us to test design concepts and gather feedback on
the functionality and flow of the design.

Overall, the feedback from all participants was positive; however,
they identified several notable limitations in the earlier stages of the
design process. Notable issues included the absence of an introduc-
tory slide providing an overview of the chart, the absence of a button
to easily navigate to the full view of the chart from the slideshow, and
the one-dimensional flow of the slideshow, lacking the functionality
to revisit previously viewed charts. In response to this construc-
tive feedback, we implemented substantial enhancements to address
these concerns and refine the design. Furthermore, we integrated
customization features as suggested by the participants.

Chart customization. ChartSync features a ‘Customizer’ tool that
enables users to adjust the color and contrast of data charts through
a simple upward swipe gesture. In designing our Customizer, we
adhered to the WCAG 2.1 guidelines [1], specifically criteria 1.4.3
and 1.4.11, to ensure the color and contrast settings are optimal for
accessibility and user experience.

4.2 Generating Data Narratives

We employed prompt engineering to instruct a pre-trained LLaMA
Model (LLM) [60] to identify and extract relevant data points from
text paragraphs associated with the chart data. This prompt provides
the contextual cues and delineates the steps involved in accurately
identifying all data points referenced in the text. Specifically, we
leveraged Chain-of-Thought (CoT) [65] and ReAct [69] prompting
techniques, which instill reasoning abilities into LLMs and help for-
mulate responses through a series of logical steps. The CoT prompt
directs the LLM to discern two types of chart references [32] in
each phrase of the text: (i) Point-level Matching, where discrete
data points directly mentioned in the text are pinpointed, and (ii)
Interval-level Matching, where data points across described ranges
or intervals in the text are identified. The ReAct prompt guides the
LLM on subsequent actions, including the validation and grouping
of data points based on their references in the text. An example
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“The product saw a
steady increase in
sales from January
(100 units) to March
(150 units), followed
by a slight dip in April
(130 units). Sales
peaked in November at
250 units after a
gradual rise starting
from July (200 units).”

Sales (Units)

Month

Bar Chart Textual Description
Figure 3: Example bar chart and accompanying text to illustrate
the CoT and ReAct prompting used in ChartSync.

of this methodology, as applied to the chart and text presented in
Figure 3, is detailed below:

i. Identification Using CoT:
e For Sentence 1:
— Point-level Matching: Jan: 100 units, Mar: 150 units,
Apr: 130 units
— Interval-level Matching: Increase from Jan to Mar, Dip
in Apr
— Data Range: Encompasses Jan, Feb, Mar, and Apr
e For Sentence 2:
— Point-level Matching: Jul: 200 units, Nov: 250 units
— Interval-level Matching: Gradual rise from Jul to Nov
— Data Range: Encompasses Jul, Aug, Sep, Oct, and Nov.

ii. Grouping Using ReAct:
e For Group 1: Early Year Sales Trend (Jan to Apr):
— Reference Grouping: Include Sentence 1.
— Data Points: Jan (100 units), Feb (120 units), Mar (150
units), Apr (130 units).
— Identified Ranges: Increase from Jan to Mar and a dip
in Apr.
e For Group 2: Mid to Late Year Sales Build-Up (Jul to
Nov)
— Reference Grouping: Include Sentence 2.
— Data Points: Jul (200 units), Aug (190 units), Sep (210
units), Oct (230 units), Nov (250 units).
— Identified Range: Gradual rise from Jul to Nov.

Demonstrative examples of reasoning (Chain of Thought, CoT)
and actions (ReAct) were manually constructed for a sampled set
of data-text pairs and were provided to the LLM using a few-shot
prompt template [8, 47].

Evaluation. To evaluate the accuracy of identifying data points
from charts corresponding to sentences in the associated textual
paragraphs, we calculated the F1 score [15]. Ground truth data was
manually generated by annotating relevant data points in a sample
of 25 chart-text pairs, which included various chart types supported
by ChartSync, such as simple and multi-bar charts and line charts.
We then compared ChartSync’s output to this ground truth, resulting
in a precision of 0.75, a recall of 0.78, and an F1 score of 0.764.
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4.3 Data Fact Narratives

ChartSync includes supplementary data facts that go beyond the
information outlined in the text. However, the potential range of data
facts is extensive due to the myriad combinations of data cells and
types of data facts available, making it difficult to compile all of
them in real time. To overcome this problem, we selected only a few
salient data facts that can provide a detailed overview to the low-
vision user. For this, we first collected nine types of data facts based
on prior work by Shi et al. [53], and then selected only those data
facts that were not only computationally feasible (e.g., Extreme facts
that highlight the smallest and largest values of bars in a bar chart),
but also aligned with the Gestalt laws of perceptual organization [66]
— principles that explain how humans instinctively perceive visual
elements as organized patterns and objects. Examples include:

e Categorization Facts: These align with the Law of Similarity,
which states that elements that are similar tend to be perceived
as more related than those that are dissimilar. For example,
in a survey about job satisfaction, you might categorize re-
sponses into ‘Satisfied’ and ‘Dissatisfied.’

e Ranking Facts: These correlate with the Law of Proximity,
suggesting that physically close elements are perceived as
more related. For example, “The countries with the highest
rates of literacy are Norway, Australia, and Canada.”

e Trend Facts: These are associated with the Law of Continuity,
which implies that elements arranged on a line are perceived
to be more related than those arranged randomly. For exam-
ple, “The rate of deforestation in the Amazon has steadily
increased from 2015 to 2020.”

We utilized Calliope [53] to identify potential facts from the data
extracted via chart OCR [38]. We employed natural language gener-
ation templates from prior research [53] and refined these templates
to enhance the naturalness of the generated sentences.

4.4 Implementation Details

We implemented ChartSync! as an Android mobile browser applica-
tion developed using an open source framework, namely Flutter [18].
When the user loads a webpage, ChartSync leverages in-built Dart
functions [14] to extract the entire HTML DOM of the webpage
and send it to the backend server via a POST request. We used the
Beautiful Soup [48] Python package to extract all images in the
DOM, labeling them with positional IDs. These images are then sent
to a custom-trained Inception-V3 model [19] trained on CHARTEX
dataset [2] and annotated with flags (True, False) to indicate if they
are data charts. Subsequently, all chart images are processed using
ChartOCR [56] to extract data attributes such as labels, legends, and
data values. Then, to identify textual paragraphs associated with
charts, we implemented the P-KLA algorithm [20] in Python and
extended it with an LLM [23] for enhanced text analysis.

The chart data points and the corresponding textual paragraph
pairs are then passed to a pre-trained LLaMA Model [23] along with
a well-engineered prompt to accurately match data points with the
corresponding sentences in the textual paragraph, including demon-
strative examples from the Kori dataset [32]. The prompt template
was constructed using Chain-of-Thought (CoT) [65] and ReAct

"https://github.com/accessodu/ChartSync.git
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prompting techniques [69] as explained before. ChartSync simulta-
neously utilizes Calliope [53] to identify existing data facts within
the charts, which are then sent to the LLM along with a natural lan-
guage template to construct corresponding summaries. ChartSync
then packages the relevant sentences and associated data points from
textual paragraphs, identifies data facts for all the charts as a JSON
object, and ships it to the Flutter module.

When the user taps on a chart, ChartSync creates an interactive
slideshow using Flutter UI modules. Each slide in the slideshow
showcases data points corresponding to a data fact present in the
aforementioned JSON object, using the FLChart package [16]. Addi-
tionally, each slide includes an audio button powered by the Flutter
TTS package [17] that reads out the text associated with the data
facts. Other functionalities, such as customization features, were
implemented using Dart [14].

S EVALUATION

To assess the efficacy of ChartSync, we conducted an IRB-approved
user study with low-vision screen magnifier users.

5.1 Participants

We recruited a total of 12 low vision users?. The average age of
the participants was 34.1 years (Median = 34.5, Minimum = 28,
Maximum = 40) and the gender representation was balanced (5
female and 7 male). The included participants were proficient screen
magnifier users who did not rely on screen readers. All participants
indicated that they browsed the web daily for at least 2 hours and
had visual acuity ranging from 20/100 to 20/500 (good eye). The
eye conditions included cataracts, glaucoma, pigmentosa, cancer,
and diabetic retinopathy.

5.2 Design

In a within-subject setup, the participants did a “free task” where
they were asked to draw inferences from charts and the associated
text associated under three distinct conditions:

e Screen Magnifier (SM) — Participants used their preferred screen
magnifier to complete the task.

e Data Chart Summary (DS) — The participants could listen to the
audio narration of the chart summary to perform the task [37].

e ChartSync (CS) — The participants leveraged ChartSync to com-
plete the task.

During the study, no time restrictions were imposed, allowing the
participants ample opportunity and time to interpret the charts and
accompanying textual descriptions. At the end of each study condi-
tion, the participants were asked: “What inferences did you derive
from the chart and associated text?”. To avoid confounds, we com-
piled a collection of 12 multimodal documents in which ChartSync
demonstrated optimal performance, achieving 100% accuracy in ex-
tracting data points from charts and correctly identifying associated
text paragraphs. The charts in these documents contained an average
of 20 data points and at least three references to these data points in
the accompanying texts. To ensure unbiased results, the assignment
and ordering of documents for the task were counterbalanced using
the Latin square method [30].

2This is the typical sample size for research in this area due to the difficulty in recruiting
participants belonging to this disadvantaged community.
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5.3 Procedure

The experimenter first obtained formal consent from participants and
briefly outlined the study’s objectives. Participants were introduced
to the mobile app, followed by a 15-minute practice session to fa-
miliarize themselves with the interface and adjust settings as needed.
They then completed the study tasks in a predetermined order. After
completing the tasks, a questionnaire was administered to assess
usability and perceived effort. The session concluded with a brief
exit interview for subjective feedback. With consent, the session was
recorded, and any notable interaction behaviors were documented.
Participants received an Amazon gift card, and all interactions were
conducted in English. Additional details regarding the apparatus
used in the study are available on GitHub!.

5.4 Data Collection and Analysis

We collected a comprehensive set of metrics and data, which in-
cluded: (i) task completion times; (ii) chart narrations, a summary
of the inferences derived by the participant from the provided chart;
(iii) responses to the System Usability Scale (SUS) questionnaire [7]
to assess perceived usability; (iv) responses to the NASA Task Load
Index (NASA-TLX) questionnaire [21] for evaluating perceived user
effort; and (v) qualitative feedback from participants as well as obser-
vations made by the experimenter. The subjective feedback from the
participants, coupled with the experimenter’s notes, were analyzed
using the open coding technique [67]. We report our findings in the
following subsection.

5.5 Results

Table 1: Participant task performance data including study con-
dition, task completion time (TC), chart narration (CN), SUS,
and NASA-TLX.

Condition | TC (min) | CN (BLEU) | SUS | NASA-TLX
SM 6.5 0.45 47.25 77.63
DS 4.3 0.54 57.75 48.1
CS 3.4 0.71 73.25 29.77

5.5.1 Task Completion times. On average, the participants spent
3.4 minutes (Median = 3.1, Minimum = 2.3, Maximum = 4.8) com-
pleting tasks in the ChartSync condition, which was significantly
lower than the average time spent in the screen magnifier condition
(Mean = 6.5 minutes; Median = 6.8, Minimum = 5.5, Maximum =
8.1) and the chart summary condition (Mean = 4.3 minutes; Median
= 4.1, Minimum = 3.7, Maximum = 5.6). This difference in task
completion times was statistically significant, as indicated by the
one-way ANOVA test? (F =72.82, p < 0.001), demonstrating the
efficiency of the ChartSync condition in comparison to the other
conditions. The faster completion times observed with ChartSync
can be attributed to its inherent design, which facilitates quicker nav-
igation and information inference through interactive slide shows,
unlike the baseline screen magnifier condition, where participants
3We ensured that all statistical tests adhered to necessary assumptions. We verified the
independence of observations within each group, confirmed the normal distribution of

data within groups via the Shapiro-Wilk test, and verified the homogeneity of variances
across groups.
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Figure 4: (a) Task workload (NASA-TLX) and (b) Perceived
usability (SUS) for all three study conditions.

had to first read and memorize text before moving to the chart to
draw inferences; ChartSync streamlined this process. In the audio
summary (DS) condition, the participants often chose to listen to the
entire summary while simultaneously using the screen magnifier to
pinpoint important points.

5.5.2  Chart Narration. During the user study, the participants were
asked to provide a detailed summary of their inferences from the
chart to understand their comprehension. We assessed the effective-
ness of this chart comprehension using the BLEU score [44, 46].
This metric quantifies the lexical similarity between the participant-
expressed narrative summaries and a ground truth baseline estab-
lished by annotators from academic backgrounds. The BLEU score
for ChartSync was 0.71, markedly surpassing the scores in other con-
ditions — 0.54 for chart summary and 0.45 for screen magnifier. This
indicates that ChartSync significantly enhanced users’ understanding
of the charts. In the baseline screen magnifier condition, the par-
ticipants’ inferences about the chart were typically vague, offering
only a general overview without delving into specific factual details,
which explains the lower observed BLEU scores. In the chart sum-
mary (DS) condition, although the inferences included more factual
details compared to the baseline, they appeared somewhat scattered
and did not convincingly demonstrate a comprehensive understand-
ing of the chart. On the other hand, with ChartSync, the sequence
and quality of facts provided by the users indicated a deeper and
more structured understanding of the chart; this was evidenced by
higher BLEU scores. Additionally, the experimenter noticed an in-
crease in the confidence of participants’ responses when discussing
their inferences with ChartSync, a level of assurance that was absent
in the other two conditions.

5.5.3  Usability and Perceived Workload. To evaluate the usability
of ChartSync, we employed the System Usability Scale (SUS) ques-
tionnaire [5, 7]. The SUS questionnaire consists of 10 alternating
positive and negative 5-scale Likert statements, where a rating of 5
corresponds to strongly agree, 1 represents strongly disagree, and
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3 represents a neutral rating. The responses to these 10 statements
are then assimilated into a single score between 0 and 100, with
higher scores indicating higher usability of the system. Figure 4(b)
displays the SUS statistics for the three study conditions. The aver-
age SUS scores for ChartSync was (L =73.25 (0 = 6.61), which was
statistically higher than those for both screen magnifiers (i = 47.25,
o =7.86) and chart summary. (L =57.75 o =9.58) condition (one-
way Anova test, ' =23.39, p < 0.001).

We employed the NASA-TLX (NASA Task Load Index) ques-
tionnaire [21] to measure the perceived workload of participants.
The questionnaire collects subjective ratings across six subscales:
Mental Demand, Physical Demand, Temporal Demand, Overall Per-
formance, Effort, and Frustration Level. Responses are aggregated
into a single score ranging from 0 to 100, where lower scores indi-
cate better performance, contrasting with the SUS scoring system.
Our analysis revealed a significant impact of the study conditions
on the NASA-TLX scores, as evidenced by the results of the one-
way ANOVA test (F =195.55, p < 0.001). Figure 4 (a) displays the
NASA-TLX statistics for the three study conditions. Notably, the
TLX scores for the ChartSync condition (it =29.77, 6 = 6.04) were
significantly lower than those for the screen magnifier (1 = 77.63,
o =3.5) and chart summary (1 =48.1, 6 =5.62) conditions. This
significant difference in TLX scores was further validated through
pairwise comparisons using the post-hoc Tukey’s HSD test, which
confirmed that ChartSync significantly outperformed both the screen
magnifier (Q =27.72, p < 0.001) and chart summary conditions
(0 =10.62, p =0.016). The reasons behind the participants’ SUS
and NASA-TLX ratings across the different study conditions were
elucidated through the analysis of feedback collected during the
open-ended exit interviews.

5.5.4 Qualitative Feedback. The analysis of the subjective feedback
from the exit interviews revealed the following insights:

ChartSync is user-friendly and straightforward. A majority of the
participants (8) attributed ChartSyncs’ high usability ratings to the
intuitive and easily navigable interface, which facilitated a smooth
user experience, even for individuals who were new to multimodal
documents. The participants also noted the ease with which they be-
came familiar with the system’s features. Furthermore, participants
reported no notable latency in retrieving relevant data points and
their associated text.

Need to enhance navigational access. While the majority of partic-
ipants (10) were satisfied with the information provided by Chart-
Sync, few participants (4) expressed a desire for broader access to
additional paragraphs present in the multimodal documents. This
feedback underscores a common need to seek more comprehensive
interaction with content beyond the specific data points and charts
initially highlighted by the system. Participants indicated that having
the ability to explore and interact with other sections of the document
would enrich their understanding and allow for a more holistic grasp
of the presented information.

6 DISCUSSION

The user study demonstrated that ChartSync improves multimodal
graphical understanding and usability for low-vision individuals who
use screen magnifiers on smartphones (see Table 1). Nonetheless,
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our approach had its limitations, which highlight potential areas for
future research. We will discuss notable ones next.

Limitations. In the evaluation study, we focused on simple bar
charts, ensuring both data extraction and chart-text pairing were
100% accurate to eliminate confounding variables. Therefore, the
performance of ChartSync must be evaluated “in the wild” on ran-
dom charts and text pairs on multimodal documents. For this purpose,
a separate user study is necessary to evaluate how the accuracy of
data extraction and identification of relevant text paragraphs influ-
ence ChartSync’s usability.

Another limitation was the reduced accuracy in charts with densely
packed data points. Moreover, the accuracy of identifying relevant
paragraphs associated with charts was not extensively tested. How-
ever, recent advancements in multimodal large language models
(MLLM) for chart interpretation offer significant opportunities to
enhance extraction performance. Given the modular architecture
of ChartSync, it would be straightforward to replace the current
algorithm with a more robust MLLM-based solution in the future,
thereby improving overall system accuracy and reliability.

Lastly, ChartSync was only implemented for smartphone chart
interaction, and therefore it is completely untested in the desk-
top/laptop environments. However, we do believe that the benefits
of ChartSync will carry over to the desktop/laptop environments and
help improve low-vision chart interaction on desktops. Deployment
of ChartSync on desktops/laptops will also be easier in the form of
browser extensions, which can provide support real-time support on
arbitrary web pages containing data charts.

Screen magnifier skimming. Based on the participants’ feedback,
we aim to develop a system that allows users to input a specific topic
of interest in a multimodal document. This system would then iden-
tify all relevant sentences and data points from charts associated with
that topic and automatically facilitate panning, moving the screen
magnifier across to showcase important information. Furthermore,
the system will be designed to allow users to interact dynamically
by adjusting the zoom level and panning speed according to their
preferences to facilitate natural skimming.

7 CONCLUSION

In this paper, we first investigated how low-vision users interact
with multimodal documents containing data charts and uncovered
their pain points as well as their interaction requirements and pref-
erences. Informed by these findings, we then developed ChartSync,
a smartphone browser-based assistive technology for low-vision
screen magnifier users to interact with multimodal chart data via
an alternative interactive slideshow interface that enables them to
obtain quick magnified ‘views’ of salient information in the charts.
Evaluation of ChartSync in a user study with 12 low vision screen
magnifier users demonstrated the effectiveness of ChartSync over
status-quo solutions while also illuminating the limitations of our
current prototype. Future improvements include large-scale eval-
uation, deeper algorithm testing, and support for a diverse set of
multimodal documents with data visualizations.
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