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ABSTRACT 
Data chart visualizations and text are often paired in news articles, 
online blogs, and academic publications to present complex data. 
While chart visualizations offer graphical summaries of the data, the 
accompanying text provides essential context and explanation. Asso-
ciating information from text and charts is straightforward for sighted 
users but presents signifcant challenges for individuals with low 
vision, especially on small-screen devices such as smartphones. The 
visual nature of charts coupled with the layout of the text inherently 
makes it diffcult for low vision users to mentally associate chart 
data with text and comprehend the content due to their dependence 
on screen magnifer assistive technology, which only displays a 
small portion of the screen at any instant due to content enlargement. 
To address this problem, in this paper, we present a smartphone-
based multimodal mixed-initiative interface that transforms static 
data charts and the accompanying text into an interactive slide show 
featuring frames containing “magnifed views” of relevant data point 
combinations. The interface also includes a narration component that 
delivers tailored information for each “magnifed view”. The design 
of our interface was informed by a user study with 10 low-vision 
participants, aimed at uncovering low vision interaction challenges 
and user-interface requirements with multimodal documents that 
integrate text and chart visualizations. Our interface was also evalu-
ated in a subsequent study with 12 low-vision participants, where 
we observed signifcant improvements in chart usability compared 
to both status-quo screen magnifers and a state-of-the-art solution. 
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1 INTRODUCTION 
Data visualizations like bar charts, line charts, and pie charts are 
commonly used to present quantitative data. These charts are in-
creasingly presented with accompanying text and are featured in 
various data storytelling formats, including news magazines, slide 
presentations, and videos [51] and are consumed at large, specif-
cally on smartphones [49]. When these charts are integrated with 
explanatory text, they create a ‘synergistic effect,’ i.e., charts capture 
the audience’s attention and provide a perceptually effective way to 
represent data while accompanying text guides the viewers and adds 
necessary context [32]. While sighted individuals can effortlessly 
switch between text and charts quickly, low-vision users [26, 61] 
face signifcant challenges, especially on smartphones, even if they 
can technically “see” the charts and accompanying text. This is be-
cause they can only view a small portion of text or chart content 
at any given time due to content magnifcation, given the fxed and 
limited screen size of smartphones. To see the occluded parts, low-
vision users must constantly move their screen magnifer lens all 
over the content, a process known as panning. Panning is well known 
to cause signifcant cognitive overhead and other usability issues for 
low vision users [34, 35, 64]. 

Existing solutions to improve accessibility of data charts have 
primarily focused on blind screen reader users [39]. These include 
providing alternative textual descriptions, natural sounds, and audio-
haptic interfaces [20, 22, 54]. While these solutions can also be 
used by low vision users, they do not exploit the residual function 
vision of these users, which can be a powerful input modality while 
interacting with charts. Also, as these solutions do not offer direct 
interaction with the data [52] and instead provide only the author’s 
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interpretation of the data, they prevent users from forming their own 
analyses and insights [55]. 

To enhance the user experience of low-vision users with charts, 
specifcally in multimodal documents, it is essential to frst under-
stand their preferences and requirements. To this end, we conducted 
a user study with 10 low-vision participants. In the study, the partici-
pants expressed a preference for viewing data points (e.g., bars in bar 
charts) within the same magnifer viewport to avoid issues associated 
with excessive panning and zooming. Also, the participants noted 
diffculties in shifting focus between text and charts, which was ex-
acerbated by magnifcation-induced disorientation. They expressed 
that the process of sequentially navigating through text while reposi-
tioning the magnifer lens for subsequent lines, and then transitioning 
to related visual charts for a more comprehensive understanding, 
was both tedious and cumbersome. Specifcally, they said that the 
continuous magnifer adjustment hindered their ability to integrate 
information seamlessly. 

Building on the identifed preferences and requirements of low-
vision individuals, as well as previous research [51, 59], we devised 
ChartSync to enhance the low vision usability of charts in multi-
modal documents on smartphones. ChartSync transforms tradition-
ally static charts on web pages into an interactive slide show (see 
Figure 1). Specifcally, ChartSync identifes important combinations 
of data points in charts, selecting them based on their relevance to the 
accompanying text and signifcant data facts present within the chart. 
ChartSync then automatically generates “magnifed views” of these 
data point combinations, which are presented to low-vision users as 
a slide show. Each slide also includes a voice-based component that 
delivers customized information for each magnifed view, providing 
summaries of specifc data points rather than traditional overall data 
chart summaries [20, 28]. 

We evaluated ChartSync in a user study with 12 low-vision partic-
ipants. In the study, the subjective feedback for ChartSync was sig-
nifcantly more positive than the baseline methods – default screen 
magnifer and a state-of-the-art method [12]. All participants re-
ported that ChartSync signifcantly reduced their cognitive load 
while interacting with data charts, allowing them to view the de-
sired content simultaneously even with magnifcation. In sum, our 
contributions are: (i) The fndings of a user study illuminating the 
preferences and requirements of low-vision users when interacting 
with charts on multimodal documents using screen magnifers; and 
(ii) ChartSync – an assistive technology application that provides an 
alternative usable interaction mode for charts. 

2 RELATED WORK 
2.1 Low Vision Interaction with Smartphones 
Extant research has predominantly focused on blind screen reader 
users [11, 25, 27, 29]. Prior research on the needs of low vision 
screen magnifer users is still in its infancy [13, 58]. Szpiro et al. [58] 
conducted a study examining the interaction behaviors of low-vision 
users utilizing screen magnifers on touch devices like smartphones. 
The research highlighted several accessibility and usability chal-
lenges these individuals encountered while using smartphone appli-
cations. Key fndings included: (i) Diffculty in panning back and 
forth following content enlargement; (ii) The need to remember 
and implement various multi-fnger gestures; (iii) Challenges with 

Figure 1: Illustration of ChartSync. When the user selects a 
chart in a document, ChartSync opens up an alternative inter-
active interface containing a slideshow of salient chart content. 
The default frst view shows the full chart along with an audio 
summary. The user can swipe right/left to go through the re-
maining slides containing magnifed views of select data points 
along with the corresponding tailored audio descriptions. 

content-agnostic screen enlargement that complicated navigation 
and comprehension of the app content; and (iv) The time-consuming 
nature of constantly changing zoom levels to properly view the 
content. Although this study provides insight into the general in-
teraction challenges faced by low-vision users on smartphones, the 
specifc impact of these issues on their interaction with multimodal 
documents, especially those with charts, is yet to be explored – a 
knowledge gap that will be addressed in our work. 

There also exist works that have proposed solutions to improve 
usability for low-vision screen magnifer users [3, 6, 33, 35, 36, 
41]. However, these solutions were primarily tailored for desktop 
interaction scenarios; very few works that have concentrated on 
improving smartphone interaction for low vision users [24, 41]. 
Moreover, these solutions have primarily focused on local context 
preservation in general-purpose mobile and desktop interaction. 
Therefore, they are less helpful for global contextual preservation, 
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i.e., situations where content is spatially distributed as in the case of 
multimodal documents with chart visualizations. 

2.2 Data Charts in Multimodal Documents 
Prior work has shown that users often struggle to integrate informa-
tion effectively across text and data visualizations, thereby indicating 
a need for enhanced interaction support while consuming such con-
tent [42]. Therefore, many works have focused on improving the 
relationship between charts and text to facilitate better information 
assimilation for sighted users [31, 32, 45, 57, 70]. For instance Latif 
et al. [32] developed Kori, a system that comprises three main com-
ponents: a chart gallery, an editing area, and a link setting panel. As 
users type using a keyboard, Kori automatically suggests potential 
links between text and charts, highlighting possible connections with 
dotted gray underlines. Users can accept these automatic sugges-
tions or manually create links through simple interactions, enabling 
a dynamic and interactive storytelling environment. There also ex-
ist a few other solutions exclusively designed for people who are 
blind [20, 63]. For example, Greenbacker et al. [20] developed a 
system for enhancing comprehension of multimodal documents 
containing line graphs. Their system pinpoints the most relevant 
paragraph within the article and delivers a summary of the graph at 
that point, thereby improving the coherence of the presentation. 

As above solutions are primarily designed for either sighted or 
blind users, they lack the necessary usability features needed for 
catering specifcally to low-vision users. Although low-vision users 
can technically use these systems with screen magnifers, they are 
likely to face signifcant challenges, e.g., extensive panning and pre-
cise visual/motor skills, in tasks such as identifying automatic sug-
gestions, previewing options, and interacting with visual elements. 
These solutions also fail to consider the residual visual capabilities 
that many low-vision users rely on when interacting with digital 
devices. This paper therefore introduces a novel system, ChartSync, 
specifcally designed to enhance the usability of charts in multimodal 
documents for low-vision users who depend on screen magnifers. 

3 UNCOVERING LOW-VISION USER NEEDS 
We conducted an Institutional Review Board (IRB)-approved study 
with 10 low-vision participants to identify their interaction chal-
lenges as well as explore their needs and preferences while interact-
ing with multimodal documents on smartphones. The average age 
of participants was 26.1 (SD: 1.58) years and the gender represen-
tation was equal (5 male, 5 female). The participants had diverse 
eye conditions including optic atrophy, glaucoma, retinitis pigmen-
tosa, LCA, nystagmus, and cataracts. All participants stated that they 
browsed the web daily for at least 2 hours. The visual acuity of the 
participants too varied between 20/100 and 20/500 (good eye). 

In the study, participants were presented with multimodal doc-
uments and were instructed to interpret data from charts and their 
corresponding textual content. After the interpretation was complete, 
participants were asked a series of questions related to the chart they 
had just reviewed and its associated textual content. Examples of 
these questions included: What diffculties did you encounter when 
interpreting data charts and accompanying text?, What strategies 
did you employ to overcome these challenges?, How satisfed were 

you with the information gained from the multimodal representa-
tion?. The feedback gathered from the user study was qualitatively 
analyzed using an open coding technique [50], which involved an it-
erative review and annotation of user responses to discover recurring 
key insights, pain points, and themes. 

Findings: Some of the notable themes from the qualitative analysis 
are presented next. 

Visual clarity preferred in chart interpretation. Most participants 
(7) preferred simpler bar and line charts over more complex multi-
bar and multi-line charts, as they found the latter visually cluttered 
and confusing. Additionally, three participants engaged in estimating 
the height of bars by using an adjacent bar as a reference point. For 
instance, in a multi-bar chart featuring three bars, they focused on the 
tallest bar and gauged the height of the other two bars by comparing 
them to the tallest one, which led to errors in estimating the height 
of the bars in the bar chart. 

Preference for context over clarity. Most of the participants (6) 
expressed a preference for viewing bars in bar charts or trends in 
line charts within the same frame or viewport of the smartphone. 
Although they had the option to enhance their visual perception 
by zooming into specifc chart details, they preferred to trade off 
magnifcation-induced clarity for context preservation. 

Text overload reduces chart engagement. Four participants noted 
an abundance of redundant text in multimodal documents. The time 
required to read this textual content via screen magnifcation led to 
cognitive overload, prompting them to entirely skip reviewing the 
charts associated with the text. 

Problem assimilating text and charts. All participants expressed 
frustration over having to navigate through extensive text and spend 
additional time examining charts using screen magnifers, highlight-
ing the diffculty of integrating these two forms of information effec-
tively. Synthesizing information across two distinct modalities (text 
and charts) presents a signifcant challenge when these elements 
are spatially separated. This spatial separation requires readers to 
continually switch their attention between the textual content and 
the visual cues on the charts that encode data (such as bars, lines, 
or points). This cognitive load phenomenon is known as the split-
attention effect [4] as defned in cognitive load theory [43], and 
corresponds to the contiguity principle in the cognitive theory of 
multimedia learning [40]. Cognitive overload due to split attention 
is naturally exacerbated for individuals with low vision when using 
screen magnifers compared to sighted individuals. 
The results of the preliminary user study provided the needs and 
requirements of low-vision users interacting with multimodal docu-
ments and reinforced the design of ChartSync. 

4 CHARTSYNC INTERFACE 
Figure 2 presents the design schematic of ChartSync mobile assistive 
technology. Upon loading a webpage (e.g., blog, news article) in 
ChartSync – a browser-based mobile application, it leverages a 
custom-trained Inception-V3 model [68] to automatically identify 
and classify the types of charts (e.g., bar chart, line chart) on the 
page. Following the classifcation of charts, ChartSync leverages 
the ChartOCR model [38] to extract detailed elements like labels, 
legends, and data values from the charts. Next, ChartSync extracts 
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Figure 2: ChartSync architectural workfow: This fgure illustrates the backend operations of ChartSync from the moment a user 
selects a chart. The data summary JSON lists relevant data points from associated text, and the data fact summary JSON details key 
facts within the chart. 

the text paragraphs relevant to each identifed chart by measuring the 
similarity between the chart’s textual components and the content 
of each paragraph in the document. ChartSync then leverages a pre-
trained LLaMA Model (LLM) [60], guided through custom prompt 
engineering, to accurately identify and extract key combinations of 
data points from charts, linking them to their corresponding textual 
content (see Section 4.2). Additionally, ChartSync identifes key 
data facts within the chart, e.g., Ranking fact – ranking the top three 
elements (see Section 4.3). 

When a user selects a data chart on the loaded webpage using 
a single tap gesture [9], ChartSync activates a multimodal mixed-
initiative interface tailored for low-vision users (see Figure 1). Uti-
lizing a swipe gesture [18], the user can then explore an interactive 
slideshow showcasing tailored “magnifed views” of the chart com-
prising select combinations of important data points in each slide. 
Furthermore, each slide is equipped with a voice button; when acti-
vated, it provides a customized data narration that focuses on the 
specifc set of data points highlighted in that slide (see Figure 1). 

4.1 ChartSync Interface Design 
Informed by prior research [9], the user interface of ChartSync 
was specifcally designed for ease of navigation using simple one-
fnger gestures, as opposed to the traditional two-fnger slide gestures 
required by standard OS accessibility services. To engage with the 

ChartSync interface, a user has to simply tap on a chart in the 
current webpage. This action opens the interface where the frst 
“view” presented is an interactive version of the selected chart. Upon 
pressing the voice button with a one-fnger ‘Tap’ gesture, users can 
listen to an audio narrative that provides an overview of the chart, 
including its title, the names of the axes, and any captions associated 
with the fgure (see Figure 1). 

When a user performs a side-ward swipe gesture, they can nav-
igate through a set of “views” as in an interactive slideshow. Each 
slide showcases a magnifed view of crucial data points from the 
chart, organized into two sequential sets on the interface. The frst 
set presents combinations of data points that align with the accompa-
nying text of the chart, allowing users to listen to an audio narration 
of this text while simultaneously viewing the data points. This setup 
helps illustrate the author’s perspective and provides a correlation 
between the visual data and textual explanation. The second set 
focuses on signifcant data facts from the chart (see Section 4.3). 
At any point during the interaction, the user can execute a upward 
swipe gesture to invoke the ‘Customizer’ tool for personalizing the 
appearance of the chart (e.g., color and contrast). 
Design Choices. Our design choices were informed by our prelim-
inary user study and supported by existing research. Traditionally, 
readers interact with news articles through a “Martini Glass” ap-
proach – initially following the narrative in text and later exploring 
the visual elements that interest them [51]. This method is unimodal, 
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requiring users to process text and visualizations separately. Such 
unimodal navigation is not optimal for low-vision users, given their 
dependence on screen magnifers. Instead, they beneft more from 
a cross-modal congruent approach [59]. Cross-modal congruence 
involves delivering stimuli from different senses in a coordinated 
manner, enhancing the consistency and compatibility between them. 
An example of this is watching a video of a dog barking while si-
multaneously hearing the bark, which aligns the auditory and visual 
senses and fosters a more integrated perception. This alignment 
can signifcantly improve cognitive processing and reaction times. 
In ChartSync, we apply this principle by simultaneously present-
ing visual content highlighting relevant data points in charts and 
corresponding audio narrations. 

User-Centered Design. In our work, we adopted a user-centered 
design approach [10], involving 5 participants throughout the de-
velopment process. The idea behind engaging these users directly 
in the development was to enhance satisfaction and acceptance of 
ChartSync. We provided them with a high-fdelity prototype [62], 
designed as a web app interface on a smartphone. This prototype 
was developed based on insights gathered from our preliminary user 
study, allowing us to test design concepts and gather feedback on 
the functionality and fow of the design. 

Overall, the feedback from all participants was positive; however, 
they identifed several notable limitations in the earlier stages of the 
design process. Notable issues included the absence of an introduc-
tory slide providing an overview of the chart, the absence of a button 
to easily navigate to the full view of the chart from the slideshow, and 
the one-dimensional fow of the slideshow, lacking the functionality 
to revisit previously viewed charts. In response to this construc-
tive feedback, we implemented substantial enhancements to address 
these concerns and refne the design. Furthermore, we integrated 
customization features as suggested by the participants. 

Chart customization. ChartSync features a ‘Customizer’ tool that 
enables users to adjust the color and contrast of data charts through 
a simple upward swipe gesture. In designing our Customizer, we 
adhered to the WCAG 2.1 guidelines [1], specifcally criteria 1.4.3 
and 1.4.11, to ensure the color and contrast settings are optimal for 
accessibility and user experience. 

4.2 Generating Data Narratives 
We employed prompt engineering to instruct a pre-trained LLaMA 
Model (LLM) [60] to identify and extract relevant data points from 
text paragraphs associated with the chart data. This prompt provides 
the contextual cues and delineates the steps involved in accurately 
identifying all data points referenced in the text. Specifcally, we 
leveraged Chain-of-Thought (CoT) [65] and ReAct [69] prompting 
techniques, which instill reasoning abilities into LLMs and help for-
mulate responses through a series of logical steps. The CoT prompt 
directs the LLM to discern two types of chart references [32] in 
each phrase of the text: (i) Point-level Matching, where discrete 
data points directly mentioned in the text are pinpointed, and (ii) 
Interval-level Matching, where data points across described ranges 
or intervals in the text are identifed. The ReAct prompt guides the 
LLM on subsequent actions, including the validation and grouping 
of data points based on their references in the text. An example 
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Figure 3: Example bar chart and accompanying text to illustrate 
the CoT and ReAct prompting used in ChartSync. 

of this methodology, as applied to the chart and text presented in 
Figure 3, is detailed below: 

i. Identifcation Using CoT: 
• For Sentence 1: 

– Point-level Matching: Jan: 100 units, Mar: 150 units, 
Apr: 130 units 

– Interval-level Matching: Increase from Jan to Mar, Dip 
in Apr 

– Data Range: Encompasses Jan, Feb, Mar, and Apr 
• For Sentence 2: 

– Point-level Matching: Jul: 200 units, Nov: 250 units 
– Interval-level Matching: Gradual rise from Jul to Nov 
– Data Range: Encompasses Jul, Aug, Sep, Oct, and Nov. 

ii. Grouping Using ReAct: 
• For Group 1: Early Year Sales Trend (Jan to Apr): 

– Reference Grouping: Include Sentence 1. 
– Data Points: Jan (100 units), Feb (120 units), Mar (150 

units), Apr (130 units). 
– Identifed Ranges: Increase from Jan to Mar and a dip 

in Apr. 
• For Group 2: Mid to Late Year Sales Build-Up (Jul to 

Nov) 
– Reference Grouping: Include Sentence 2. 
– Data Points: Jul (200 units), Aug (190 units), Sep (210 

units), Oct (230 units), Nov (250 units). 
– Identifed Range: Gradual rise from Jul to Nov. 

Demonstrative examples of reasoning (Chain of Thought, CoT) 
and actions (ReAct) were manually constructed for a sampled set 
of data-text pairs and were provided to the LLM using a few-shot 
prompt template [8, 47]. 

Evaluation. To evaluate the accuracy of identifying data points 
from charts corresponding to sentences in the associated textual 
paragraphs, we calculated the F1 score [15]. Ground truth data was 
manually generated by annotating relevant data points in a sample 
of 25 chart-text pairs, which included various chart types supported 
by ChartSync, such as simple and multi-bar charts and line charts. 
We then compared ChartSync’s output to this ground truth, resulting 
in a precision of 0.75, a recall of 0.78, and an F1 score of 0.764. 
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4.3 Data Fact Narratives 
ChartSync includes supplementary data facts that go beyond the 
information outlined in the text. However, the potential range of data 
facts is extensive due to the myriad combinations of data cells and 
types of data facts available, making it diffcult to compile all of 
them in real time. To overcome this problem, we selected only a few 
salient data facts that can provide a detailed overview to the low-
vision user. For this, we frst collected nine types of data facts based 
on prior work by Shi et al. [53], and then selected only those data 
facts that were not only computationally feasible (e.g., Extreme facts 
that highlight the smallest and largest values of bars in a bar chart), 
but also aligned with the Gestalt laws of perceptual organization [66] 
– principles that explain how humans instinctively perceive visual 
elements as organized patterns and objects. Examples include: 

• Categorization Facts: These align with the Law of Similarity, 
which states that elements that are similar tend to be perceived 
as more related than those that are dissimilar. For example, 
in a survey about job satisfaction, you might categorize re-
sponses into ‘Satisfed’ and ‘Dissatisfed.’ 

• Ranking Facts: These correlate with the Law of Proximity, 
suggesting that physically close elements are perceived as 
more related. For example, “The countries with the highest 
rates of literacy are Norway, Australia, and Canada.” 

• Trend Facts: These are associated with the Law of Continuity, 
which implies that elements arranged on a line are perceived 
to be more related than those arranged randomly. For exam-
ple, “The rate of deforestation in the Amazon has steadily 
increased from 2015 to 2020.” 

We utilized Calliope [53] to identify potential facts from the data 
extracted via chart OCR [38]. We employed natural language gener-
ation templates from prior research [53] and refned these templates 
to enhance the naturalness of the generated sentences. 

4.4 Implementation Details 
We implemented ChartSync1 as an Android mobile browser applica-
tion developed using an open source framework, namely Flutter [18]. 
When the user loads a webpage, ChartSync leverages in-built Dart 
functions [14] to extract the entire HTML DOM of the webpage 
and send it to the backend server via a POST request. We used the 
Beautiful Soup [48] Python package to extract all images in the 
DOM, labeling them with positional IDs. These images are then sent 
to a custom-trained Inception-V3 model [19] trained on CHARTEX 
dataset [2] and annotated with fags (True, False) to indicate if they 
are data charts. Subsequently, all chart images are processed using 
ChartOCR [56] to extract data attributes such as labels, legends, and 
data values. Then, to identify textual paragraphs associated with 
charts, we implemented the P-KLA algorithm [20] in Python and 
extended it with an LLM [23] for enhanced text analysis. 

The chart data points and the corresponding textual paragraph 
pairs are then passed to a pre-trained LLaMA Model [23] along with 
a well-engineered prompt to accurately match data points with the 
corresponding sentences in the textual paragraph, including demon-
strative examples from the Kori dataset [32]. The prompt template 
was constructed using Chain-of-Thought (CoT) [65] and ReAct 

1https://github.com/accessodu/ChartSync.git 

prompting techniques [69] as explained before. ChartSync simulta-
neously utilizes Calliope [53] to identify existing data facts within 
the charts, which are then sent to the LLM along with a natural lan-
guage template to construct corresponding summaries. ChartSync 
then packages the relevant sentences and associated data points from 
textual paragraphs, identifes data facts for all the charts as a JSON 
object, and ships it to the Flutter module. 

When the user taps on a chart, ChartSync creates an interactive 
slideshow using Flutter UI modules. Each slide in the slideshow 
showcases data points corresponding to a data fact present in the 
aforementioned JSON object, using the FLChart package [16]. Addi-
tionally, each slide includes an audio button powered by the Flutter 
TTS package [17] that reads out the text associated with the data 
facts. Other functionalities, such as customization features, were 
implemented using Dart [14]. 

5 EVALUATION 
To assess the effcacy of ChartSync, we conducted an IRB-approved 
user study with low-vision screen magnifer users. 

5.1 Participants 
We recruited a total of 12 low vision users2. The average age of 
the participants was 34.1 years (Median = 34.5, Minimum = 28, 
Maximum = 40) and the gender representation was balanced (5 
female and 7 male). The included participants were profcient screen 
magnifer users who did not rely on screen readers. All participants 
indicated that they browsed the web daily for at least 2 hours and 
had visual acuity ranging from 20/100 to 20/500 (good eye). The 
eye conditions included cataracts, glaucoma, pigmentosa, cancer, 
and diabetic retinopathy. 

5.2 Design 
In a within-subject setup, the participants did a “free task” where 
they were asked to draw inferences from charts and the associated 
text associated under three distinct conditions: 
• Screen Magnifer (SM) – Participants used their preferred screen 

magnifer to complete the task. 
• Data Chart Summary (DS) – The participants could listen to the 

audio narration of the chart summary to perform the task [37]. 
• ChartSync (CS) – The participants leveraged ChartSync to com-

plete the task. 
During the study, no time restrictions were imposed, allowing the 
participants ample opportunity and time to interpret the charts and 
accompanying textual descriptions. At the end of each study condi-
tion, the participants were asked: “What inferences did you derive 
from the chart and associated text?”. To avoid confounds, we com-
piled a collection of 12 multimodal documents in which ChartSync 
demonstrated optimal performance, achieving 100% accuracy in ex-
tracting data points from charts and correctly identifying associated 
text paragraphs. The charts in these documents contained an average 
of 20 data points and at least three references to these data points in 
the accompanying texts. To ensure unbiased results, the assignment 
and ordering of documents for the task were counterbalanced using 
the Latin square method [30]. 
2This is the typical sample size for research in this area due to the diffculty in recruiting 
participants belonging to this disadvantaged community. 
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5.3 Procedure 
The experimenter frst obtained formal consent from participants and 
briefy outlined the study’s objectives. Participants were introduced 
to the mobile app, followed by a 15-minute practice session to fa-
miliarize themselves with the interface and adjust settings as needed. 
They then completed the study tasks in a predetermined order. After 
completing the tasks, a questionnaire was administered to assess 
usability and perceived effort. The session concluded with a brief 
exit interview for subjective feedback. With consent, the session was 
recorded, and any notable interaction behaviors were documented. 
Participants received an Amazon gift card, and all interactions were 
conducted in English. Additional details regarding the apparatus 
used in the study are available on GitHub1. 

5.4 Data Collection and Analysis 
We collected a comprehensive set of metrics and data, which in-
cluded: (i) task completion times; (ii) chart narrations, a summary 
of the inferences derived by the participant from the provided chart; 
(iii) responses to the System Usability Scale (SUS) questionnaire [7] 
to assess perceived usability; (iv) responses to the NASA Task Load 
Index (NASA-TLX) questionnaire [21] for evaluating perceived user 
effort; and (v) qualitative feedback from participants as well as obser-
vations made by the experimenter. The subjective feedback from the 
participants, coupled with the experimenter’s notes, were analyzed 
using the open coding technique [67]. We report our fndings in the 
following subsection. 

5.5 Results 

Table 1: Participant task performance data including study con-
dition, task completion time (TC), chart narration (CN), SUS, 
and NASA-TLX. 

Condition TC (min) CN (BLEU) SUS NASA-TLX 
SM 6.5 0.45 47.25 77.63 
DS 4.3 0.54 57.75 48.1 
CS 3.4 0.71 73.25 29.77 

5.5.1 Task Completion times. On average, the participants spent 
3.4 minutes (Median = 3.1, Minimum = 2.3, Maximum = 4.8) com-
pleting tasks in the ChartSync condition, which was signifcantly 
lower than the average time spent in the screen magnifer condition 
(Mean = 6.5 minutes; Median = 6.8, Minimum = 5.5, Maximum = 
8.1) and the chart summary condition (Mean = 4.3 minutes; Median 
= 4.1, Minimum = 3.7, Maximum = 5.6). This difference in task 
completion times was statistically signifcant, as indicated by the 
one-way ANOVA test3 (F = 72.82, p < 0.001), demonstrating the 
effciency of the ChartSync condition in comparison to the other 
conditions. The faster completion times observed with ChartSync 
can be attributed to its inherent design, which facilitates quicker nav-
igation and information inference through interactive slide shows, 
unlike the baseline screen magnifer condition, where participants 
3We ensured that all statistical tests adhered to necessary assumptions. We verifed the 
independence of observations within each group, confrmed the normal distribution of 
data within groups via the Shapiro-Wilk test, and verifed the homogeneity of variances 
across groups. 

Figure 4: (a) Task workload (NASA-TLX) and (b) Perceived 
usability (SUS) for all three study conditions. 

had to frst read and memorize text before moving to the chart to 
draw inferences; ChartSync streamlined this process. In the audio 
summary (DS) condition, the participants often chose to listen to the 
entire summary while simultaneously using the screen magnifer to 
pinpoint important points. 

5.5.2 Chart Narration. During the user study, the participants were 
asked to provide a detailed summary of their inferences from the 
chart to understand their comprehension. We assessed the effective-
ness of this chart comprehension using the BLEU score [44, 46]. 
This metric quantifes the lexical similarity between the participant-
expressed narrative summaries and a ground truth baseline estab-
lished by annotators from academic backgrounds. The BLEU score 
for ChartSync was 0.71, markedly surpassing the scores in other con-
ditions – 0.54 for chart summary and 0.45 for screen magnifer. This 
indicates that ChartSync signifcantly enhanced users’ understanding 
of the charts. In the baseline screen magnifer condition, the par-
ticipants’ inferences about the chart were typically vague, offering 
only a general overview without delving into specifc factual details, 
which explains the lower observed BLEU scores. In the chart sum-
mary (DS) condition, although the inferences included more factual 
details compared to the baseline, they appeared somewhat scattered 
and did not convincingly demonstrate a comprehensive understand-
ing of the chart. On the other hand, with ChartSync, the sequence 
and quality of facts provided by the users indicated a deeper and 
more structured understanding of the chart; this was evidenced by 
higher BLEU scores. Additionally, the experimenter noticed an in-
crease in the confdence of participants’ responses when discussing 
their inferences with ChartSync, a level of assurance that was absent 
in the other two conditions. 

5.5.3 Usability and Perceived Workload. To evaluate the usability 
of ChartSync, we employed the System Usability Scale (SUS) ques-
tionnaire [5, 7]. The SUS questionnaire consists of 10 alternating 
positive and negative 5-scale Likert statements, where a rating of 5 
corresponds to strongly agree, 1 represents strongly disagree, and 
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3 represents a neutral rating. The responses to these 10 statements 
are then assimilated into a single score between 0 and 100, with 
higher scores indicating higher usability of the system. Figure 4(b) 
displays the SUS statistics for the three study conditions. The aver-
age SUS scores for ChartSync was µ = 73.25 (σ = 6.61), which was 
statistically higher than those for both screen magnifers (µ = 47.25, 
σ = 7.86) and chart summary. (µ = 57.75 σ = 9.58) condition (one-
way Anova test, F = 23.39, p < 0.001). 

We employed the NASA-TLX (NASA Task Load Index) ques-
tionnaire [21] to measure the perceived workload of participants. 
The questionnaire collects subjective ratings across six subscales: 
Mental Demand, Physical Demand, Temporal Demand, Overall Per-
formance, Effort, and Frustration Level. Responses are aggregated 
into a single score ranging from 0 to 100, where lower scores indi-
cate better performance, contrasting with the SUS scoring system. 
Our analysis revealed a signifcant impact of the study conditions 
on the NASA-TLX scores, as evidenced by the results of the one-
way ANOVA test (F = 195.55, p < 0.001). Figure 4 (a) displays the 
NASA-TLX statistics for the three study conditions. Notably, the 
TLX scores for the ChartSync condition (µ = 29.77, σ = 6.04) were 
signifcantly lower than those for the screen magnifer (µ = 77.63, 
σ = 3.5) and chart summary (µ = 48.1, σ = 5.62) conditions. This 
signifcant difference in TLX scores was further validated through 
pairwise comparisons using the post-hoc Tukey’s HSD test, which 
confrmed that ChartSync signifcantly outperformed both the screen 
magnifer (Q = 27.72, p < 0.001) and chart summary conditions 
(Q = 10.62, p = 0.016). The reasons behind the participants’ SUS 
and NASA-TLX ratings across the different study conditions were 
elucidated through the analysis of feedback collected during the 
open-ended exit interviews. 

5.5.4 Qalitative Feedback. The analysis of the subjective feedback 
from the exit interviews revealed the following insights: 

ChartSync is user-friendly and straightforward. A majority of the 
participants (8) attributed ChartSyncs’ high usability ratings to the 
intuitive and easily navigable interface, which facilitated a smooth 
user experience, even for individuals who were new to multimodal 
documents. The participants also noted the ease with which they be-
came familiar with the system’s features. Furthermore, participants 
reported no notable latency in retrieving relevant data points and 
their associated text. 
Need to enhance navigational access. While the majority of partic-
ipants (10) were satisfed with the information provided by Chart-
Sync, few participants (4) expressed a desire for broader access to 
additional paragraphs present in the multimodal documents. This 
feedback underscores a common need to seek more comprehensive 
interaction with content beyond the specifc data points and charts 
initially highlighted by the system. Participants indicated that having 
the ability to explore and interact with other sections of the document 
would enrich their understanding and allow for a more holistic grasp 
of the presented information. 

6 DISCUSSION 
The user study demonstrated that ChartSync improves multimodal 
graphical understanding and usability for low-vision individuals who 
use screen magnifers on smartphones (see Table 1). Nonetheless, 

our approach had its limitations, which highlight potential areas for 
future research. We will discuss notable ones next. 

Limitations. In the evaluation study, we focused on simple bar 
charts, ensuring both data extraction and chart-text pairing were 
100% accurate to eliminate confounding variables. Therefore, the 
performance of ChartSync must be evaluated “in the wild” on ran-
dom charts and text pairs on multimodal documents. For this purpose, 
a separate user study is necessary to evaluate how the accuracy of 
data extraction and identifcation of relevant text paragraphs infu-
ence ChartSync’s usability. 

Another limitation was the reduced accuracy in charts with densely 
packed data points. Moreover, the accuracy of identifying relevant 
paragraphs associated with charts was not extensively tested. How-
ever, recent advancements in multimodal large language models 
(MLLM) for chart interpretation offer signifcant opportunities to 
enhance extraction performance. Given the modular architecture 
of ChartSync, it would be straightforward to replace the current 
algorithm with a more robust MLLM-based solution in the future, 
thereby improving overall system accuracy and reliability. 

Lastly, ChartSync was only implemented for smartphone chart 
interaction, and therefore it is completely untested in the desk-
top/laptop environments. However, we do believe that the benefts 
of ChartSync will carry over to the desktop/laptop environments and 
help improve low-vision chart interaction on desktops. Deployment 
of ChartSync on desktops/laptops will also be easier in the form of 
browser extensions, which can provide support real-time support on 
arbitrary web pages containing data charts. 

Screen magnifer skimming. Based on the participants’ feedback, 
we aim to develop a system that allows users to input a specifc topic 
of interest in a multimodal document. This system would then iden-
tify all relevant sentences and data points from charts associated with 
that topic and automatically facilitate panning, moving the screen 
magnifer across to showcase important information. Furthermore, 
the system will be designed to allow users to interact dynamically 
by adjusting the zoom level and panning speed according to their 
preferences to facilitate natural skimming. 

7 CONCLUSION 
In this paper, we frst investigated how low-vision users interact 
with multimodal documents containing data charts and uncovered 
their pain points as well as their interaction requirements and pref-
erences. Informed by these fndings, we then developed ChartSync, 
a smartphone browser-based assistive technology for low-vision 
screen magnifer users to interact with multimodal chart data via 
an alternative interactive slideshow interface that enables them to 
obtain quick magnifed ‘views’ of salient information in the charts. 
Evaluation of ChartSync in a user study with 12 low vision screen 
magnifer users demonstrated the effectiveness of ChartSync over 
status-quo solutions while also illuminating the limitations of our 
current prototype. Future improvements include large-scale eval-
uation, deeper algorithm testing, and support for a diverse set of 
multimodal documents with data visualizations. 
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