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ABSTRACT
Online reviews have become an integral aspect of consumer decision-
making on e-commerce websites, especially in the restaurant indus-
try. Unlike sighted users who can visually skim through the reviews,
perusing reviews remains challenging for blind users, who rely on
screen reader assistive technology that supports predominantly
one-dimensional narration of content via keyboard shortcuts. In
an interview study, we uncovered numerous pain points of blind
screen reader users with online restaurant reviews, notably, the lis-
tening fatigue and frustration after going through only the first few
reviews. To address these issues, we developed QuickCue assistive
tool that performs aspect-focused sentiment-driven summarization
to reorganize the information in the reviews into an alternative,
thematically-organized presentation that is conveniently perusable
with a screen reader. At its core, QuickCue utilizes a large language
model to perform aspect-based joint classification for grouping
reviews, followed by focused summarizations within the groups to
generate concise representations of reviewers’ opinions, which are
then presented to the screen reader users via an accessible interface.
Evaluation of QuickCue in a user study with 10 participants showed
significant improvements in overall usability and task workload
compared to the status quo screen reader.
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1 INTRODUCTION
Online reviews have become a cornerstone of modern consumer
decision-making, offering valuable insights into products, services,
and experiences [44, 69, 91]. This has especially been the case in
the restaurant industry, with reviews and ratings providing diners
with information about food quality, ambiance, and service, thereby
helping them make informed choices [33, 59]. Therefore, the pre-
sentation of information in user reviews must be as holistic and
fair as possible, to avoid inducing consumer biases and harming
a restaurant’s reputation. While present applications (e.g., Google
Maps) do include an assortment of features in their interfaces to
help prospective diners make fully-informed decisions, these fea-
tures are presently insufficient for blind users who rely on screen
reader assistive technology to interact with these applications.
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Figure 1: QuickCue’s interface hierarchy: (A) displays the default list of five aspects, (B) shows the positives and negatives of
each aspect, and (C) shows the original reviews associated with each aspect-sentiment pair.

A screen reader (e.g., JAWS [38], NVDA [63], VoiceOver [7])
narrates web-application content based on the order in the web-
page’s document object model (DOM), essentially enforcing a one-
dimensional interaction with the content. Although a screen reader
offers numerous keyboard shortcuts to aid navigation, the “press-
and-listen” paradigm inherently limits the efficiency and usability
of accessing and consuming information, including user reviews,
in websites [50, 67]. In contrast, sighted users can effortlessly scan
and skim online reviews, by leveraging visual cues to quickly pin-
point relevant content. In an interview study with 30 blind screen
reader users, we found that participants often experienced listening
fatigue after perusing only a few reviews, they faced difficulties
in finding specific information, and in general they struggled with
navigating unstructured and repetitive reviews. Almost all partic-
ipants expressed a need for an alternative thematic presentation
of reviews (i.e., grouping according to food quality, ambiance, ser-
vice, etc.), with further bifurcation of information along the lines of
‘positives’ and ‘negatives’ (e.g., good/bad experiences about service,
food, or ambiance).

To address the aforementioned interaction challenges as well
as adapt the presentation of information to match users’ needs
and preferences, we developed QuickCue, a novel assistive tool
embodied as a browser extension, that augments the existing inter-
face (see Figure 1) with additional content comprising aspect-based

organization of information mined from reviews. To generate such
as an alternative presentation, QuickCue performs the following
two core tasks: (i) Joint classification of reviews to determine the
aspect-sentiment pairs covered in the reviews; followed by (ii) Fo-
cused summarization of select reviews associated with each aspect-
sentiment pair. QuickCue performs both these tasks by leveraging
the GPT-4 large large model (LLM), specifically using the clue and
reasoning prompt engineering strategy [76] for joint classification,
and directed stimulus prompt engineering strategy [55] for focused
summarization of select reviews. The user interface, as shown in
Figure 1, hierarchically presents the generated information, with
only aspects listed in the first level (Figure 1(A)), to the positive
and negative summaries in the second level (Figure 1(B)), to the
subset of reviews associated with the aspect-sentiment pair in the
last level (Figure 1(C)).

A user study with 10 blind participants showed that QuickCue
significantly improved usability and reduced interaction workload
for blind screen reader users while perusing user reviews, com-
pared to the status quo. Furthermore, a majority of the participants
stated that QuickCue would enable them to make more informed
decisions regarding choice of restaurants. In sum, this paper makes
the following contributions:

• Interview study with 30 blind users uncovering their inter-
action challenges and needs regarding online reviews.

2
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• The design, development, and evaluation of QuickCue, a
novel assistive tool for blind users to efficiently consume
customer reviews.

2 RELATEDWORK
2.1 Online Review Systems
Extensive research has explored the impact of online reviews on
consumer decision making [26, 56, 72, 73]. Liu et al. [56] found that
online reviews allow consumers to make more informed choices,
acting as digital word-of-mouth. The impact of reviews extends
to sales performance, as even slight changes in ratings can lead to
substantial variations in revenue [58]. Credibility is a key factor
in the effectiveness of online reviews, with detailed, balanced, and
authentic feedback being perceived as more trustworthy [36].

In the restaurant domain, consumer reviews typically include
detailed feedback on food quality, service, ambiance, and price, all
of which are key factors influencing a prospective diner’s restau-
rant selection. Campos et al. [72] applied natural language process-
ing techniques to analyze sentiments in online reviews, showing
how positive or negative sentiments directly impact restaurant
reputation and customer expectations. Dash et al. [26] further ex-
tended this work by demonstrating the effectiveness of deep learn-
ing models in extracting relevant attributes from online reviews
to recommend dishes, highlight popular items, and even tailor ex-
periences based on individual customer preferences. The above
research works underline the critical role of online reviews in shap-
ing consumer perceptions and behaviors. However, these works do
not explore users’ interaction and engagement with the content in
reviews. While online review systems play a crucial role in shap-
ing consumer preferences, blind screen reader users are presently
unable to fully exploit these systems, as the present user interfaces
are mostly designed for visual interaction. We address this issue in
this paper by building QuickCue that dynamically augments the
current review systems with a screen-reader friendly interface to
conveniently peruse information in reviews.

2.2 Web Interaction with Screen Readers
As mentioned earlier, blind people interact with digital applica-
tions, including web applications, using screen-reader assistive
technology such as JAWS, NVDA, or VoiceOver. A screen reader
transforms the two-dimensional graphical interface of a web page
into a linear, one-dimensional list of on-screen elements (such as
headers, text, buttons, and menus) for auditory navigation. This
sequential press-and-listen method of navigation has been found
to create significant accessibility and usability challenges for blind
users [3, 10, 11, 15, 40, 61, 64, 92], despite the availability of several
accessibility guidelines [21, 24, 25] and accessibility checking-aids
for web developers [1, 2, 18, 49].

While the accessibility challenges have been extensively investi-
gated in prior works [48, 57, 88], relatively fewer studies have fo-
cused on the usability of web interaction for screen reader users [12,
34, 52]. Usability, i.e., the ease, efficiency and satisfactionwithwhich
users can accomplish tasks, is equally important in web interaction
for blind users, with many studies showing that screen reader users
are typically an order of magnitude slower than sighted peers in

doing the same web tasks [30, 60]. While usability-enhancing solu-
tions for blind users have been proposed in the literature [9, 19, 32,
34, 35, 47, 51–53, 67, 68, 77], these have predominantly focused on
the general efficiency of webpage navigation, and as such they are
inadequate in their ability to address domain-specific challenges
involved in online review systems. Review systems are not only
text-heavy with significant information redundancy, but often re-
quire nuanced understanding of tone, sentiment, and other specific
preferences or features that traditional screen readers and other
extant usability solutions are currently unable to support for assist-
ing blind users. A tailored solution is therefore needed to address
this issue and make online review systems more usable for blind
screen reader users, which is the focus of this paper.

2.3 User Interfaces of Review Systems
The effective organization of information plays a crucial role in en-
hancing user experience, especially in text-heavy online review sys-
tems. Therefore, prior works have looked into methods such as clus-
tering, sentiment-based categorization, and personalized filtering
to structure data in reviews into more digestible formats [45, 46, 89].
For instance, faceted navigation has been widely applied in e-
commerce platforms to allow users to filter reviews based on spe-
cific attributes, such as taste, portion size, and service quality [83].
Similarly, researchers have explored sentiment-based organization
of restaurant reviews, finding that customers tend to prioritize at-
tributes such as food quality and pricing when assessing menu
items [8, 93]. However, these works have all focused mostly on
sighted-user interaction, and as such do not fully address the unique
needs of blind screen reader users.

Another factor to consider while presenting reviews to blind
users is the redundancy of information. As screen reader interaction
consumes significant time and effort [50, 71], repetitive reviews
with little new information can be burdensome for blind users,
since they are unable to quickly skim through the reviews like their
sighted counterparts. Text summarization [31, 78], therefore, can
be a valuable tool to address this issue. Especially, the recent large
language models such as GPT-4 [4], Gemini [79], and Llama [81]
which have demonstrated remarkable summarization capabilities
across diverse domains with either prompting [23, 43, 74] or mini-
mal fine-tuning [90], can be very useful to compact information in
reviews across different aspects and granularity before providing
them to the blind users. However, ensuring factual accuracy and
maintaining relevance in generated summaries requires domain-
specific adaptation (e.g., through tailored few-shot prompts) and is
currently an active area of research [39, 84]. While some applica-
tions, e.g., Google Maps, are leveraging these models to summarize
information in reviews, these are mostly ‘high-level’ short sum-
maries capturing multiple aspects; these applications do not provide
specific summaries pertaining to individual aspects, which can be
more informative to users.

3 INTERVIEW STUDY
We conducted an IRB-approved interview study with 30 screen
reader users to investigate their needs and challenges regarding
online customer reviews, particularly in the restaurant domain. The
participants were recruited via email lists and word-of-mouth. The
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average age of the participants was 43.2 years (median: 44, min: 22,
max: 63), and the gender distribution was 13 male and 17 female.
The inclusion criteria were: (i) Proficiency in web screen reading;
(ii) Familiarity with online review systems including restaurant
reviews; and (iii) Proficiency in English. The interviews were semi-
structured to allow deeper discussions into the participants’ needs
and issues, with each discussion initiated by a set of careful crafted
seed questions. Examples of seed questions included: What are
the primary challenges you encounter while navigating restaurant
reviews?, What key information do you prioritize when browsing re-
views?, How do you typically search for the key details in the reviews?,
andWhat improvements would make it easier for you to find relevant
and helpful information in restaurant reviews?. The interview feed-
back was qualitatively analyzed using the standard open coding
and axial coding methods [70], where we iteratively examined the
transcribed interview data to identify key insights and pain points.

3.1 Findings
Information overload and listening fatigue. A majority (26) of
the participants reported struggling with navigating large volumes
of reviews, describing it as a significant challenge due to repetitive
and redundant content that caused frustration and fatigue. In this
regard, one participant P8 stated, “It’s frustrating to go through
10 reviews that say the same thing – great food, nice ambiance. I
need more details, like whether the restaurant can accommodate
dietary restrictions or if the seating is comfortable and accessible.”
Another participant P4 shared a similar sentiment, “Sometimes I
just give up because the information feels repetitive and boring.”
More than half (17) of the participants expressed that often stopped
perusing reviews after listening to only the first few reviews due to
listening fatigue. Eleven participants further felt that the present
interface was not ‘fair’ to them in this regard, as they could not
obtain sufficient information to make informed decisions. Towards
this, one participant P12 mentioned, “I cannot go beyond 4 to 5
comments without getting tired ... sometimes even less if the first
couple of reviews are too long ... so I don’t get the full picture
of what is good and what is bad ... just have to decide based on
opinions of a couple of folks, which is obviously unfair.”
Outdated information and reviews. All participants mentioned
that they often came across reviews that contained outdated infor-
mation about the different aspects of the restaurants. For examples,
P6 said, “I first check the menu and then look at the reviews to
see which items are good. But some of the reviews don’t make any
sense, since they mention dishes that don’t exist in the menu ... per-
haps the menu has been changed after the review was written, who
knows”. Another participant P23 echoed, “A lot of things changed
after COVID ... many reviews before COVID are no longer useful.”
When probed regarding their preferred time threshold for reviews,
17 participants mentioned that they wished to only view reviews in
the past 1 year, 7 participants indicated two years as their preferred
limit, whereas the remaining 6 participants mentioned that they
were only interested in reviews from the past six months. In this
regard, one participant P17 stated, “Restaurant staff, food quality,
and service keep changing all the time. What was good a few years
ago may not be good anymore ... some of the bad stuff might have
also improved over time.”

Thematic organization of information in reviews.Most (28)
of the participants expressed a need for an alternative aspect-based
(e.g., food quality, hygiene, and ambiance) organization of informa-
tion in reviews, as they felt that this type of organization helpful
because it allowed them to quickly identify the aspects most rel-
evant to their needs. Sixteen participants further suggested sum-
marizing reviews within each aspect to avoid redundancy in the
content and also drown out vague uninformative reviews (e.g., good
food!). As for the preferred aspects, food quality and pricing were
unsurprisingly specified as high priority (by 26 and 22 participants
respectively). The customer service, hygiene, and ambiance aspects
were also mentioned as important by a sizable chunk of the partici-
pant pool (19, 16, and 12 participants respectively). For instance, P5
stated, “I attend for the food; however, if the environment is noisy
or cramped, it detracts from the overall experience.” Another par-
ticipant P27 reiterated this perspective: “Good service is essential.
A rude waiter can make even a tasty meal forgettable.”
Sentiment-based insights. Nearly two-thirds (19) of the partici-
pants expressed a desire for sentiment-based segregation of infor-
mation in the reviews. For instance, P16 said, “ I simply like to know
what is good and what is bad. What is nice about the food... which
dishes to avoid.. is the place too crowded on the weekends... are the
prices reasonable. If I can easily get this information without having
to search for it myself, it will save me a lot of time.” The preferences
for the ‘positives’ vs. ‘negatives’ however varied across the differ-
ent aspects. While some of the participants were more interested
in the positive feedback regarding food quality (e.g., ‘What items
are most recommended here?’ – P14), others were more interested
in the negative feedback regarding hygiene (e.g., ‘Do they have a
hand sanitizer at the entrance?’ – P23). Similarly, regarding the pric-
ing, customer service, and ambiance, the participants leaned more
towards negative, negative, and positive feedback respectively.
Summary. The participants pointed out several interaction issues
with the current presentation of customer reviews, including listen-
ing fatigue, frustration after listening to only a few reviews, content
redundancy, and difficulty in searching for specific information. To
address these issues, most participants suggested an alternative
presentation of information in the customer reviews, specifically
along the concepts of themes (or aspects) and customer sentiment.
With Google Maps as the vehicle for our investigation, we devel-
oped QuickCue prototype that generates such an alternative screen
reader-friendly thematic presentation of information in restaurant
reviews, as described next.

4 QUICKCUE PROTOTYPE DESIGN
4.1 Overview
Figure 2 presents an operational schematic of the QuickCue browser
extension we built to thematically organize information in customer
reviews and then present this processed information via a screen
reader-friendly user interface (Figure 1). For the case study, we
chose the Google Maps platform, given that it is most popular
platform for sharing reviews online, especially regarding restau-
rants [27]. As seen in the figure, QuickCue augments the existing
Google Maps user interface with additional accessible content in
which the information in reviews are organized based on both their
underlying aspect (e.g., food quality, pricing) and their sentiment

4
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Figure 2: A workflow schematic depicting QuickCue’s architecture.

(positive, negative). The first level comprises a list of five drop-
down buttons, each corresponding to an aspect. The next level
comprises positive and negative summaries pertaining to each of
the five aspects. The last level simply lists the raw reviews classified
as belonging to each of the aspect/sentiment pairs. This arrange-
ment, designed based on the findings of the interview study, not
only reduces information redundancy by enabling users to get a
quick overview of the ‘good’ and the ‘bad’ of aspects the users care
about, but also helps them focus on a subset of reviews pertaining
to a specific aspect of interest, e.g., reviews that shed light on the
negative experiences with customer service.

To generate such an alternative presentation of information in
reviews, QuickCue addresses the following two main technical
challenges, which primarily stem from the heterogeneous nature
of customer reviews: (i) A review can contain information about
multiple aspects; and (ii) A review can contain both positive and
negative opinions about different aspects (e.g., food was good, but the
table and seats were not properly cleaned) and even within the same
aspect (e.g., the staff were very friendly, but the wait was too long!).
To address these challenges, QuickCue performs the following core
operations by adapting the state-of-the-art large language models

(LLMs): (i) Joint classification of reviews – given a review, deter-
mine all the <aspect, sentiment> pairs that are applicable to that
review based on its contained information; and (ii) Aspect-focused
summarization of information in reviews – given a set of reviews,
generate a summary that only focuses on a particular aspect and
sentiment. The details of these operations are provided in the next.

4.2 Joint Classification of Reviews
QuickCue performs joint classification of reviews to group them ac-
cording to the aspects and sentiments covered in their content.
Specifically, for each review, QuickCue determines all the <as-
pect,sentiment> pairs that are applicable to that review. For ex-
ample, for the review "The food was delicious, but the service
was slow.", QuickCue’s joint classifier will output "[["Food," "Posi-
tive"],["Customer Service," "Negative"]]." As justified earlier, Quick-
Cue primarily looks for five aspects (food, ambiance, customer
service, pricing, and hygiene) and two sentiments (positive and
negative), while doing the classifications.

To do the joint classification, QuickCue leverages the GPT-4
large language model (LLM) [66], due to its proven ability to reason
over complex contexts and generate tailored outputs [41, 80]. To
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instruct the LLM to accurately classify the reviews, we specifically
adapted the Clue and Reasoning Prompting (CARP) strategy [76],
given its suitability for this task. The CARP strategy enhances
the classification performance by instructing the LLM to look for
‘clues’ and use that in the reasoning process while determining the
class of the input text. The clues may refer to a keyword, phrase,
or contextual element extracted from the input text that provides
evidence for classification. Since the original CARP prompting [76]
was intended for only sentiment classification, we modified it so as
to make the LLM generate a set of aspect-sentiment pairs as output
instead of a single classification label. The structure of our modified
CARP prompt is shown below.

Task Description: This is a joint aspect-sentiment classifier
for restaurant reviews.

First, present CLUES (i.e., keywords, phrases, contextual
information, semantic meaning, semantic relations, tones,
references) that support the joint aspect-sentiment deter-
mination of input (look for clues related to Food, Ambiance,
Customer Service, Pricing, Hygiene for aspect, and clues
related to positive, negative for sentiment).

Second, deduce a diagnostic REASONING process from
premises (i.e., clues, input) that supports the sentiment deter-
mination for each identified aspect. Note that an aspect can
be identifiedmultiple times in different locations of the input.

Third, determine the list of aspect-sentiment pairs present
in the INPUT, considering the CLUES and the REASON-
ING process.

Output all possible aspect-sentiment pairs after removing
empty pairs if any.
For ASPECT, choose from the following predefined set of
words: [Food, Ambiance, Hygiene, Customer Service,
Pricing].
For SENTIMENT, choose from the following two words:
[Positive,Negative]

EXAMPLES:

INPUT: The ambiance was warm and inviting, but the
pasta lacked seasoning and was undercooked.

CLUES: [ambiance, warm], [ambiance, inviting], [pasta,
lacked seasoning], [pasta, undercooked]

REASONING: The terms “warm” and “inviting” suggest a
welcoming and pleasant atmosphere, indicating a positive
experience with ambiance.
The phrases “lacked seasoning” and “undercooked” indicate
dissatisfaction with the food quality, suggesting a negative
sentiment for food.

ASPECT-SENTIMENT Pairs: [“Ambiance”, “Positive”]
[“Food”, “Negative”]

INPUT: [Insert review text here]

As shown in the template, to further enhance the classification
performance, we augmented the CARP prompt with few-shot exam-
ples. Based on the recommendation of prior work which advocated
a minimum of 16 few-shot examples for the CARP prompt [76],
we created 20 examples, i.e., 2 examples for each of the 10 aspect-
sentiment pairs. We chose a diverse set of reviews for these exam-
ples, covering different restaurant cuisines and locations.

After classifying each of the reviews using the joint classifier,
QuickCue categorizes the reviews based on the aspect-sentiment
pairs, i.e., for each of the 10 aspect-sentiment pairs, QuickCue
identifies the corresponding subset of matching reviews, based on
the classifier output. Note that, given the heterogeneity of reviews,
a review can possibly be included in multiple subsets corresponding
to different aspect-sentiment pairs. Each subset then serves as the
input for generating focused review summaries, as explained later
in Section 4.3.
Evaluation. To evaluate the performance of the joint classifier, we
created a ground truth dataset bymanually annotating 50 reviews or
examples which were randomly sampled across diverse restaurant
cuisines and locations. The frequency breakdown for the 10 aspect-
sentiment pairs in this dataset was as follows: [Food, Negative]: 24,
[Food, Positive]: 27, [Customer Service, Negative]: 10, [Customer
Service, Positive]: 15, [Pricing, Negative]: 9, [Pricing, Positive]:
8, [Ambiance, Negative]: 5, [Ambiance, Positive]: 12, [Hygiene,
Negative]: 6, [Hygiene, Positive]: 5. The annotations were done
manually by a research assistant and subsequently verified by two
other research assistants.

We experimented with two prompt variations: zero-shot (no il-
lustrative examples) and few-shot (20 demonstrative examples), and
we used the standard precision, recall, and F-1 metrics to measure
performance. The few-shot method yielded a significantly better
performance of 0.8001 precision, 0.8201 recall, and 0.8099 F1-score
(all averages) compared to the zero-shot method, which exhibited a
much lower performance of 0.615 precision, 0.625 recall, and 0.6199
F1-score. Note that the reported values are averages, since each
review was tagged with multiple aspect-sentiment pairs; precision,
recall, and F1-scores were computed for each review in the dataset
and then averaged across all the reviews. Upon careful analysis of
the classifier outputs, the majority of classification errors occurred
when the the reviews had the same aspect occurring twice, once
for each sentiment (e.g., pasta was excellent but the chicken tenders
were cold), thereby indicating that further experimentation with
prompts is needed to differentiate between the two occurrences of
the same aspect.

4.3 Focused Summarization
Once the subsets are identified for each aspect-sentiment pair,
QuickCue next generates focused summaries pertaining to each
pair. Recall that we need focused summarization due to the hetero-
geneous nature of information in reviews; general summarization
techniques may omit salient information pertaining to the target
aspect-sentiment pair and instead include information about other
pairs in the generated summary. For this task, QuickCue employs
the Directional Stimulus Prompting (DSP) technique for LLMs [55].
This prompting technique involves providing keywords as direc-
tional stimuli to tailor the summarization process via selective
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information prioritization. A snippet of our DSP prompt template
is shown below.

Task Instructions: Summarize the given reviews by
focusing only on the specified main aspect and desired
sentiment. Use the Directional Stimuli (keywords)
for guidance. Ensure the generated summary excludes
unrelated aspects, redundant phrases, and undesired
sentiments, while keeping it concise and clear.

Reviews: [Input reviews here]
Directional Stimuli:
Main Aspect: [Insert Desired Aspect]
Desired Sentiment: [Insert Desired Sentiment]

Output Instruction:
Generate the summary as a sequence of bullet points, with
each point highlighting one salient feature uncovered about
the specified aspect and desired sentiment.

Examples:
Reviews: [Input reviews here]
Directional Stimuli:
Main Topic: Customer Service
Sentiment: Negative
Output Summary:

- Many customers complained about slow service,
stating that their orders took significantly longer
than expected.

- Some reviewers mentioned that the staff appeared
inattentive and unresponsive, making it difficult to
get assistance.

- Several customers reported that the staff lacked
knowledge about the menu, leading to confusion
when placing orders.

- Several reviews pointed out that employees lacked
professionalism, often engaging in personal conver-
sations rather than attending to customers.

- Many visitors expressed frustration over the lack
of courtesy from staff, mentioning that employees
were often rude or dismissive.

...

INPUT: [Input reviews here]

As seen in the above prompt, we included few-shot examples [5]
within the prompt template to improve the quality of the summa-
rization. We specifically crafted 10 few-shot examples (one for each
aspect-sentiment pair), each of which included a set of randomly
sampled reviews and the corresponding handcrafted summary.
Evaluation. To evaluate the efficacy of our DSP prompt in gen-
erating focused summaries, we built a test dataset comprising 50
examples – 5 for each aspect-sentiment pair. The ground truth sum-
maries for these examples were carefully handcrafted and verified
to ensure that they contained all the salient pieces of information
pertaining to the corresponding aspect-sentiment pairs. To evaluate
the quality of generated summaries, we relied on manual human
evaluation, given the proven unreliability of automatic evaluation

methods [75]. Specifically, 10 human annotators provided the fol-
lowing two metrics for each generated summary: (i) Factuality (1
for least accurate and 10 for highly accurate), which determines if
all facts in the summary aligned with the reviews, and (ii) Noisiness
(1 for highly noisy and 10 for least noisy), which evaluated the
extent to which extraneous, off-topic information is present in a
summary considering the target aspect-sentiment pair. For both of
these metrics, the average score for each example (across the 10
annotators) was first computed, and then the overall average (i.e.,
average of averages) was computed across all the 50 examples in
the test dataset.

The average factuality and noisiness scores for the few-shot
DSP prompt were 7.9 and 8.3 respectively. Annotators noted that
reduced scores for factuality often stemmed from incomplete infor-
mation in generated summaries. A closer inspection of low-scoring
examples revealed that this was mostly due to conflicting and vague
information in reviews. For example, for a particular dish, some
reviews expressed positive sentiment due to its spiciness whereas
a few other reviews expressed a positive sentiment indicating that
the same dish was not that spicy. The generated summary however
only included the latter aspect of the dish as one of the salient
points. This highlights the inherent ambiguity due to the subjectiv-
ity of the peoples’ perceptions regarding the different aspects. Note
that QuickCue follows a modular architecture, allowing the sum-
marization module to be easily replaced with an improved version
in future research.

4.4 User Interface
As mentioned earlier, QuickCue inserts its content into the existing
Google Maps as an augmentation, so that the user does not have
to shift focus to another page (see Figure 2). As shown in Figure 1,
the content generated by QuickCue is arranged in a hierarchy com-
prising three layers (i.e., aspects, focused summaries, and original
reviews). Specifically, QuickCue renders this hierarchy in HTML as
an accordion, and automatically injects ARIA (Accessible Rich In-
ternet Applications) attributes [87] to make it accessible. Moreover,
QuickCue also adds tab-index attributes to relevant nodes in the ac-
cordion for enabling screen-reader users to easily navigate content
at each layer using TAB and SHIFT+TAB hotkeys. QuickCue allows
the users to navigate down the hierarchy via the ENTER key, and
navigate up the hierarchy using the ESCAPE key. In sum, QuickCue
simplifies interaction with information in reviews, limiting it to a
few basic screen reader hotkeys.

4.5 Additional Implementation Details
TheQuickCuewas implemented as a Google Chrome browser exten-
sion, following open-source guidelines for browser extensions [29].
Extraction of reviews from Google Maps was done by leveraging
pre-defined XPath information identifying the HTML DOM nodes
corresponding to these reviews. The extracted data was structured
into JSON objects and transferred to the backend through REST-
ful API calls [28] for further processing. Text preprocessing was
performed using the NLTK [16] and spaCy [6] libraries, and noise
elements such as emojis, out-of-vocabulary words, and excessive
whitespace were filtered out using regular expressions [37]. All
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ID
Age/
Gender

Age of
Vision Loss Occupation

Screen
Reader

Web
Experience

P1 43/M Since birth Teacher JAWS 7 years
P2 36/M Age 8 Unemployed JAWS 4 years
P3 28/M Since birth Student NVDA 11 years
P4 23/M Age 10 Student JAWS 8 years

P5 36/F Since birth Social
Worker JAWS 5 years

P6 32/M Age 6 Teacher JAWS 4 years
P7 25/F NA Unemployed NVDA 2 years

P8 38/M NA Social
Worker JAWS 6 years

P9 31/F Since birth Teacher JAWS 5 years
P10 22/F Age 8 Student JAWS 6 years

Table 1: Participant demographics. All information was self-
reported by the participants.

data exchanges between QuickCue modules were in JSON for con-
sistency and convenience. Integration of LLM into QuickCue was
done using the well-known LangChain framework [22].

5 USER STUDY
We conducted an IRB-approved user study with screen reader users
to evaluate the usability of QuickCue and compare it against the sta-
tus quo. A total of 10 blind participants1 (4 female, 6 male) were re-
cruited through email lists and snowball sampling. The participants
had an average age of 31.4 years (Median = 31.5, Range = 22–43).
The inclusion criteria were: (i) familiarity with web screen reading
and online review platforms; (ii) experience using the Chrome web
browser and proficiency in JAWS; (iii) proficiency in using the stan-
dard QWERTY keyboard; and (iv) proficiency in communicating in
English. To preserve external validity, we ensured that there was
no overlap between the participant groups of this study and the
prior interview study. All participants reported that they regularly
engaged with customer reviews across various platforms, includ-
ing shopping websites and food ordering services. The participant
demographics are detailed in Table 1.

5.1 Design
In a within-subject experimental design, each participant was asked
to freely explore and compare two restaurants on Google Maps
based on their reviews, under the following two conditions:

• Screen Reader: The status quo baseline, where the par-
ticipants used their screen reader to peruse reviews in the
default Google Maps user interface.

• QuickCue: The participants used their screen reader to
interact with the augmented Google Maps user interface,
containing the accordion generated by our QuickCue assis-
tive tool.

1This is the typical sample size for research in this area, due to the difficulty in recruiting
participants belonging to this community [13, 67].

Influenced by the insights from the interview study, we chose a
free-form comparison task to emulate real-world interaction sce-
narios in which users typically navigate reviews of multiple restau-
rants before making their decisions. To mitigate learning effects
and avoid confounding variables, we selected four different restau-
rants for the two tasks. Additionally, we ensured that QuickCue
accurately retrieved all reviews to prevent any confounding effects
of retrieval accuracy. The assignment of restaurants to conditions
and the ordering of conditions were counterbalanced across study
participants using the well-known Latin Square method [17]. A
maximum of 30 minutes was allotted for each task.

5.2 Procedure
At the beginning of the study, the experimenter explained the study
objectives to the participant, and obtained an informed consent.
This was followed by a practice session where the participant was
allowed to familiarize with the QuickCue interface, refresh memo-
ries regarding screen reader hotkeys, and making any adjustments
to the screen reader configuration (e.g., adjust speech rate). Note
that all participants did the tasks on a Windows ThinkPad lap-
top provided by the experimenter, with all the necessary software
installed, and also connected to an external standard QWERTY
keyboard familiar to all the participants. The experimenter then
asked the participant to complete the tasks in the pre-determined
counterbalanced order. After the tasks, the experimenter admin-
istered the standard questionnaires, namely the System Usability
Scale (SUS) [20] to assess usability, and the NASA Task Load In-
dex (NASA-TLX) [42] to evaluate perceived workload. Lastly, the
experimenter debriefed the participant in an exit interview, en-
couraging to provide subjective feedback, including the experience
with QuickCue, difficulties while doing the tasks, and suggestions
for improvement. All interactions were conducted in English. To
prioritize participants’ well-being, they were informed that they
could take breaks or withdraw from the study at any time. The
participants received $30 as compensation for their time.

5.3 Data Collection and Analysis
The experimenter documented participants’ responses to the SUS
and NASA-TLX questionnaires, recorded their think-aloud utter-
ances during task execution, and observed their screen reader in-
teraction behavior throughout the study. The SUS and NASA-TLX
responses were analyzed using descriptive and inferential statis-
tical methods. For qualitative data, we applied grounded theory
methods [65], specifically the open coding and axial coding tech-
niques [70] to systematically iterate over transcribed participant re-
sponses and uncover recurring themes and key insights. We present
our findings next.

5.4 Results
5.4.1 Usability. As mentioned earlier, SUS questionnaire [20] was
used to evaluate usability. Specifically, SUS asks the participants
to rate ten statements on a 5-point Likert scale ranging from 1 to
5, with 1 indicating “strongly disagree” and 5 signifying “strongly
agree.” A final SUS score between 0 and 100 is then calculated by
assimilating the individual ratings based on a predefined formula,
and higher scores indicate better usability. The SUS scores for the
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Figure 3: (Left) SUS scores, (right) NASA-TLX scores.

two experimental conditions are shown in Figure 3, where it can be
clearly observed that the QuickCue condition received significantly
higher scores compared to the default screen reader condition.
Specifically, the Screen Reader condition received an average SUS
score of 63.25 (median = 63.75, min = 52.5, max = 72.5), whereas the
QuickCue condition received an average SUS score of 81.5 (median
= 81.25, min = 72.5, max = 90.0). A one-way ANOVA test confirmed
that the difference in usability scores between the two conditions
was statistically significant 𝐹 = 45.03, 𝑝 = 2.72 × 10−6.

5.4.2 Task Workload. We employed the standard NASA-TLX ques-
tionnaire [42] to assess task workload. Like SUS, NASA-TLX also
assimilates user’s ratings into a score between 0 and 100, however,
lower TLX scores indicate less workload and therefore better per-
formance and user experience. The TLX score statistics for the
two conditions are shown in Figure 3, where it can be observed
that QuickCue significantly decreased the task workload, thereby
substantially improving participants’ user experience. Specifically,
in the Screen Reader condition, the average TLX score was 62.09
(median = 62.0, min = 54.0, max = 69.93) and in the QuickCue con-
dition, the average TLX score was 38.37 (median = 36.17, min =
32.0, max = 50.67). This difference in average TLX scores between
conditions was also found to be statistically significant (One-way
ANOVA, 𝐹 = 99.27, 𝑃 = 9.45 × 10−9). A closer inspection of indi-
vidual ratings revealed that the Effort and Temporal Demand TLX
sub-scales contributed relatively more to the significant difference
between conditions, compared to the other four sub-scales.

5.4.3 Qualitative Feedback. The following core insights were un-
covered from the qualitative analysis of the participants’ subjective
feedback during the exit interviews.

Simplistic design and ease of use. A majority (7) of partici-
pants attributed their higher usability perception of QuickCue to its
simplistic design, which allowed them to navigate it using simple
keyboard shortcuts that they were already familiar with. Addition-
ally, they expressed appreciation for the “summary feature”, stating
that it helped them to “listen less and learn more” and “listen to only
what they wanted” about a restaurant. Regarding this, P3 said, “ If
I have these summaries, I will not at all listen to the reviews. It is
extremely frustrating to listen to a lot of irrelevant and repeated

feedback that barely tells me anything about what I would like
to know about the food and the experience.” The experimenter
also noted such an interaction behavior during the study, where
some of the participants did not bother going through the origi-
nal reviews, and instead just listened to the summaries pertaining
to a few aspect-sentiment pairs of interest. Five participants fur-
ther stated that QuickCue would enable them to “explore more”
and try ordering new dishes instead of the ordering the “same old
tried-and-tested” items they are already familiar with at a given
restaurant. For instance, P2 mentioned, “This is very helpful...you
know...I don’t cook much, but when I order, it’s always the same food
because it takes a lot of time to sit and read reviews, and find some-
thing else...especially after a long day’s work. If there’s an easier way,
of course, I’d use it to know what else is good.”

Extension of QuickCue to other review platforms. All par-
ticipants appreciated how perusing user reviews on Google Maps
was “quite organized” and “less boring” with QuickCue, enabling
them to explore others’ opinions with greater interest and helping
them feel “more confident” in their dining decisions. Seven partici-
pants inquired if the system could be extended to other platforms,
particularly e-commerce, where they prefer to read user reviews
before making a purchase. For instance, P8 asked, “Does this work
on Amazon? I shop quite a lot there, and this would definitely help
me make better purchase decisions. I’d like to know what others are
saying about a product before I buy it...like its quality, whether it’s
worth the price, or if there are any updates or improvements.”

Repetitive search hinders restaurant comparison. Nearly all
participants (9) mentioned that during the comparison task, they
had to repeat the tedious process of searching for pieces of informa-
tion pertaining to a specific aspect of interest, when then navigated
to the reviews of the second restaurant from the reviews of the first
restaurant. The experimenter also noted some of the think-aloud
utterances that corroborate this statement, e.g., “Okay, now I have
to do it again. Let’s find out where I can find comments about the
taste and price of burgers.” Five participants further explained that
such a repetitive search process was simply “too tiring” without ad-
ditional support, and that QuickCue helped them reduce this effort
to a “large extent”. Nonetheless, this feedback highlights the need
for personalized summarization to enable users to prioritize their
favorite aspects across multiple restaurants, thereby facilitating
convenient comparisons between restaurants.

6 DISCUSSION
6.1 Limitations
One limitation of our work is that we evaluated QuickCue exclu-
sively with JAWS screen reader users. Although JAWS is the most
popular screen reader, many blind users also use other screen read-
ers such as NVDA and VoiceOver [85]. While QuickCue concep-
tually is screen reader-agnostic and will therefore likely produce
similar results in the case of other screen reader users, the evalua-
tion must nonetheless be conducted to validate our hypotheses.

Another limitation of our prototype is that it currently supports
only desktop and laptop platforms. Research highlights a growing
trend of users relying on smartphones to read and interact with
online reviews, necessitating the adaptation of QuickCue for mobile
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platforms. However, this transition poses challenges, as mobile
web browsers generally lack support for extensions. To overcome
this limitation, we plan to explore alternative solutions, such as
developing standalone service applications, to extend QuickCue’s
functionality to smartphone users.

A third limitation is that our few-shot learning and testing ex-
amples for joint classification and focused summarization were
confined to English-language restaurant reviews, leaving the algo-
rithm’s effectiveness in other languages unexplored. The sizes of
the samples too were relatively small due to the large amount of
manual effort involved in building these test datasets. Moreover,
QuickCue is currently restricted to the Chrome web browser. Al-
though Chrome is the most commonly used browser among blind
users, a significant portion of users still rely on alternatives such
as Firefox [86] and Safari. Future work will therefore also focus
on expanding QuickCue’s compatibility to other languages and
additional web browsers.

Another limitation of our work was that the technique to extract
the reviews from the Google Maps webpage consisted of hand-
crafted rules based on predefined XPath patterns. For enabling
QuickCue to function end-to-end, algorithms need to be devised to
automatically detect and extract user reviews from webpages.

Furthermore, our evaluation was mostly qualitative, lacking
quantitative metrics such as task completion time or error rates.
While this approach provided valuable user experience insights, in
a future study with a larger group of participants, we plan to design
tasks that will facilitate quantitative analysis and therefore a more
comprehensive assessment of QuickCue’s effectiveness.

Also, as mentioned earlier, QuickCue was specifically designed
and tested only for the review sections of restaurant menus, and its
effectiveness on other types of websites is yet to be explored. How-
ever, given the modular and generalizable architecture of QuickCue,
future research could focus on expanding its functionality to other
website genres such as e-commerce platforms, classifieds, and en-
tertainment sites, to evaluate its broader applicability.

6.2 Personalized User Preferences
In the subjective feedback, many participants highlighted the need
for personalization in QuickCue, specifically the ability to store
user preferences such as favorite aspect-sentiment pairs, and ensur-
ing it automatically applies across all restaurant menus. Based on
this feedback, we plan to extend QuickCue to support user-driven
customization [14, 62]. To implement this, we will develop a pop-up
interface that allows users to pre-select their preferences from pre-
defined aspect-sentiment pair options. These selections will then
be processed through a custom filtering algorithm, dynamically
generating a user interface that reflects the chosen settings. In fu-
ture work, we aim to fully integrate personalized support within
QuickCue, enhancing usability and delivering a more tailored, user-
centric experience.

6.3 Generalization Beyond Restaurant Reviews
Online customer reviews provide valuable, topical, and relevant
feedback on service features and user experiences [82]. Numerous
studies have investigated customer reviews in the restaurant sector,
where the experiential nature of dining amplifies the impact of

reviews and user comments [54]. Given this, our paper focused on
developing QuickCue using restaurant reviews as a case study to
enhance the reviews’ usability and improve the overall user expe-
rience for blind users. However, QuickCue is not strictly limited
to restaurant reviews, as its modular architecture was designed
for inherent scalability across different domains. It consists of two
core components: joint classification and focused summarization,
enabling seamless adaptation to various review-based platforms,
such as product reviews on e-commerce sites or classified advertise-
ments. This flexibility requires minimal re-engineering, primarily
involving data-driven modifications. For instance, in this study, we
classify reviews based on five predefined aspects; transitioning to a
different domain would require identifying and extracting relevant
domain-specific aspects. Moreover, the prompt templates utilized
in our approach are specifically curated for restaurant reviews
and would also need to be adapted to align with the contextual
requirements of other domains.

7 CONCLUSION
The current layout of customer reviews regarding restaurants pri-
marily caters to the preferences and ease of sighted users. For blind
users, however, this arrangement results in a tedious and frustrating
content-consumption experience, requiring them to traverse large
volumes of text while often encountering irrelevant content. To
address this usability gap, we developed QuickCue, an intelligent
assistive tool embodied as a browser extension specifically designed
for blind screen reader users to conveniently access information in
online customer reviews, specifically those pertaining to Google
Maps. QuickCue streamlines access to review sections, allowing
users to efficiently search for relevant information and compare
restaurant menus more effectively, thereby enhancing decision-
making. The QuickCue organizes the review section by breaking it
down into selectable aspects (e.g., food, service, ambiance), followed
by the presentation of positive and negative summaries for each
aspect to provide a quick overview. In a user study with 10 blind
participants, QuickCue significantly outperformed the status quo
regarding usability and overall user experience.
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